Refine Your Search

Topic

Author

Search Results

Technical Paper

Engine out Particulate Emission Optimization with Multiple Injection Strategy for 3-Cylinder Turbo GDI E6d Engine

2021-09-22
2021-26-0070
With the increase in the number of automobiles on road, there is a very strong emphasis on reducing the air pollution which led to evolution of stringent emission norms. To meet these stringent emission norms, the ideal solution is to optimize the engine hardware and the combustion system to reduce the emission at source thereby reducing the dependency on exhaust after treatment system. Gasoline Direct Injection (GDI) engines are gaining popularity worldwide as they provide a balance between fun to drive and fuel efficiency. Controlling the particle emissions especially Particle Number (PN) is a challenge in GDI engines due to the nature of its combustion system. In this study, experiments were performed on a 1.2Litre 3-cylinder 250bar GDI engine to capture the effect of injection strategies on PN.
Technical Paper

Fuel Efficiency Simulation Methodology for Commercial Vehicles: Approach to Generate Dynamic Duty Cycles for Simulation

2021-09-22
2021-26-0343
Fuel efficiency is critical aspect for commercial vehicles as fuel is major part of operational costs. To complicate scenario further, fuel efficiency testing, unlike in passenger cars is more time consuming and laborious. Thus, to save on development cost and save time in actual testing, simulations plays crucial role. Typically, actual vehicle speed and gear usage is captured using reference vehicle in desired route and used it for simulation of target vehicle. Limitation to this approach is captured duty cycle is specific to powertrain and driver behavior of reference vehicle. Any change in powertrain or vehicle resistance or driver of target vehicle will alter duty cycle and hence duty cycle of reference vehicle is no more valid for simulation assessment. This paper demonstrates approach which uses combination of tools to address this challenge. Simulation approach proposed here have three parts.
Technical Paper

Simulation Based Approach to Improve the Engine Oil Warmup Behavior Using Exhaust Gas During NEDC Cycle

2021-09-22
2021-26-0422
During the cold start conditions engine must overcome higher friction loss, at the cost of fuel penalty till the optimum temperatures are reached in coolant and lubrication circuits. The lower thermal capacity of the lubrication oil (with respect to the coolant) inverses the relation of viscosity with temperature, improves engine thermal efficiency benefit. Engine oil takes full NEDC test cycle duration to reach 90°C. This leads to higher friction loss throughout the test cycle, contributing a significant increase in fuel consumption. Increasing oil temperature reduces viscosity, thereby reducing the engine friction. This helps to identify the focus for thermal management in the direction of speeding up the temperature rise during a cold engine starting. This work aims at the study and experiment of an exhaust recovery mechanism to improve the NEDC fuel economy.
Technical Paper

Finite Element Analysis of FEAD Bracket and Correlation with Test

2010-04-12
2010-01-0493
With the increasing demand for light weight engines, the design of FEAD (Front end accessory drive) Brackets has gradually shifted from conservative cast iron design to optimized aluminum design. Hence there is a requirement for a virtual validation procedure that is robust and accurate. The FEAD brackets for the engine are subjected to periodic vibrations (engine excitations) and random vibrations (Road excitations), the former being the more dominant of the two as road excitations are isolated by the power train mounts. Hence these brackets are susceptible to fatigue failures. The paper describes a virtual validation procedure adopted for FEAD brackets that gives accurate stress prediction and thereby ensures accuracy in predicted fatigue factor of safety for design. The simulated dynamic stresses are later compared with the test results and a good correlation is observed.
Technical Paper

Experimental Analysis of Combustion Noise Reduction with Performance Optimization in 110cc CVT Scooter Engine

2016-10-17
2016-01-2311
Indian two wheeler market is one of the largest and highly competitive in the world. Indian scooter segment grows at a pace of around 30% YOY. The stiff competition among OEM’s to increase the market share with fuel efficient and high performance products pushes development and calibration engineers to burn the midnight oil to concoct innovative methods to design technology boosted product. Customer expectations are always high in terms of fuel economy, drivability and NVH. Due to higher level of complexity involved in CVT (Continuously Varying Transmission) engine, it is difficult to optimize for achieving best of NVH characteristics along with Fuel Economy, drivability and reduced exhaust emission. This paper describes the experiment conducted during the development of 110cc CVT four stroke scooter engine. The development and calibration of this scooter was mainly based on real world usage pattern (RWUP).
Technical Paper

Methodology to Quantitatively Evaluate the Secondary Ride Characteristics of a Vehicle

2017-07-10
2017-28-1959
The Ride Comfort has always been an important attribute of a vehicle that gets trade-off with handling characteristics of a vehicle. However, to cater the growing customer requirements for better ride comfort in a vehicle without compromising on other attributes, evaluating and achieving optimal ride comfort has become a significant process in the vehicle development. In the current engineering capability and virtual engineering simulations, creating an accurate and real time model to predict ride comfort of a vehicle is a challenging task. The qualitative evaluation of ride attributes has always been the proven conventional method to finalize the requirements of a vehicle. However, quantitative evaluation of vehicle ride characteristics benefits in terms of target setting during vehicle development process and in robust validation of the final intended product against its specifications.
Technical Paper

Low Rolling Resistance Tires and Their Impact on Electric Vehicles

2017-07-10
2017-28-1941
This paper details the methodology used to show the importance of Low rolling resistance tires in Electric Vehicles. Fuel efficiency and range is paramount with most of the electric vehicle buyers. Although many people are now becoming aware of low rolling resistance tires but its development started way back in 1990’s. It is always challenging to achieve low rolling resistance in smaller tires of size 12 inch or 13 inch along meeting the other critical vehicle parameters such as ride and handling, NVH, durability and many more. The reduction in rolling resistance can also affect the traction properties of tires. In case of very low rolling resistance tires the traction will be very less but it can badly affect the other vehicle parameters. Selection of tires further depend upon the RWUP (Real World Usage Profile). It means the vehicle is targeted for which region and what is the condition of roads there.
Technical Paper

Vehicle Interior Space Optimization through Occupant Seating Layout Apportioning

2017-07-10
2017-28-1923
Digital human models (DHM) have greatly enhanced design for the automotive environment. The major advantage of the DHMs today is their ability to quickly test a broad range of the population within specific design parameters. The need to create expensive prototypes and run time consuming clinics can be significantly reduced. However, while the anthropometric databases within these models are comprehensive, the ability to position the manikin’s posture is limited and needs lot of optimization. This study enhances the occupant postures and their seating positions, in all instances the occupant was instructed to adjust to the vehicle parameters so they were in their most comfortable position. While all the Occupants are accommodated to their respective positions which finally can be stacked up for space assessments. This paper aims at simulating those scenarios for different percentiles / population which will further aid in decision making for critical parameters.
Technical Paper

Turbocharging a Small Two Cylinder DI Diesel Engine - Experiences in Improving the Power, Low End Torque and Specific Fuel Consumption

2011-09-11
2011-24-0133
Turbocharged common rail direct injection engines offer multiple benefits compared to their naturally aspirated counterparts by allowing for a significant increase in the power and torque output, while simultaneously improving the specific fuel consumption and smoke. They also make it possible for the engine to operate at a leaner air/fuel mixture ratio, thereby reducing particulate matter emission and permitting higher EGR flow rates. In the present work, a two cylinder, naturally aspirated common rail injected engine for use on a load carrier platform has been fitted with a turbocharger for improving the power and torque output, so that the engine can be used in a vehicle with a higher kerb weight. The basic architecture and hardware remain unchanged between the naturally aspirated and turbocharged versions. A fixed geometry, waste gated turbocharger with intercooling is used.
Technical Paper

Duty Cycle Fatigue Simulation for Differential Casing

2012-04-16
2012-01-0813
In the current scenario of growing demand for lightweight designs for improving fuel economy and reduced cost, the focus is on optimum design solutions. This calls for improved and accurate prediction capabilities in terms of life or cycles the design can sustain in real world usage profile. Conventionally, the differential casings are simulated and designed for worst loads experienced and the approach used is infinite life design for these loads. But, this would lead to overdesign and increase weight. To counter this problem the methodology for fatigue analysis for the derived duty cycle of differential casing is developed. The critical regions can be identified based on life and the solutions can be worked out without major design changes. This paper briefs the nonlinear static load cases required for deriving the block cycle loading and incorporating these as a duty cycle in fatigue solver.
Technical Paper

Development & Customization of Test Cases for Start-stop Functionality to Achieve On-road Robustness

2013-11-27
2013-01-2875
The Micro-hybrid technology otherwise called as stop start system offers a significant improvement in fuel economy particularly in urban driving conditions, where more often the engine idles unnecessarily at traffic signals/jams. Micro-hybrid technology stops the engine at traffic signals/jams and starts the engine automatically on clearance of traffic signals/jams leading to reduced fuel consumption and emissions. This is achieved by monitoring several vehicle and engine parameters through appropriate sensing elements. In this study, the system architecture and functional definitions of start/stop system is defined. Equivalence class, boundary value and decision-table testing are used to generate test cases. On generation of test cases, their relevance on on-road robustness and scope for optimization towards time/efforts are analyzed. In the process, a matrix of different conditions and criteria are formulated. Under these conditions, the system behavior is evaluated.
Technical Paper

Model-Based Simulation Approach to Reduce Jerk Issue in Power Shuttle Transmission (PST) Tractor

2022-08-30
2022-01-1119
Nowadays, tractors are frequently used with front-end loaders, dozers and backhoes to cater to various non-agricultural and construction application needs. These applications require frequent shifting of gears due to the constant need for a tractor's forward/reverse direction of motion. Hence, the tractors are fitted with a power shuttle transmission (PST) to cater this need. Power-shuttle transmission (PST) development is a design process that incorporates multiple disciplines such as mechanical, hydraulics, controls and electronics. This paper presents a simulation-based approach to model the power shuttle transmission of the tractor. Firstly, individual components of PST are modelled in detail and then integrated with the complete tractor model. For this, GT-Suite has been used as a simulation platform.
Technical Paper

Light Weighting of Accessory Support Bracket from Cast Iron to Aluminium Through Topology Optimization

2022-08-30
2022-01-1110
In today’s scenario, internal combustion engines have conflicting requirements of high power density and best in class weight. High power density leads to higher loads on engine components and calls for a material addition to meet the durability targets. Lightweight design not only helps to improve fuel economy but also reduces the overall cost of the engine. Material change from cast iron to aluminium has a huge potential for weight reduction as aluminium has 62% lesser mass density. But this light-weighting impacts the stiffness of the parts as elastic modulus drops by around 50%. Hence, this calls for revisiting the design and usage of optimization tools for load-bearing members on the engine to arrive at optimized sections and ribbing profiles. This paper discusses the optimization approach for one of the engine components i.e., the FEAD (front end accessory drive) bracket.
Technical Paper

Structural Evaluation of Light Weight Aluminum Bedplate Design with Cast Iron Inserts through CAE for High Density Diesel Engine

2013-04-08
2013-01-1200
Improving fuel economy and reducing emissions is becoming critical for future vehicles which will be lighter and faster. This demands, future engines to cater two contradictory requirements, one is high power density engine and other is lightweight compact engine design. This would require rigorous and accurate structural evaluation to achieve optimum design. Downsizing the engine is best way to achieve these goals. Three cylinder diesel engine is best suited for achieving high power and performance. It brings in challenges of design complexity due to need of balancer shaft for three cylinder engine. Bedplate evaluation becomes difficult due to design complexity induced by integration of Cast Iron inserts in Aluminum bedplate and packaging of balancer shaft. Also manufacturing process involved, operating temperatures, high combustion pressures increase the difficulties.
Technical Paper

A Unique Methodology to Evaluate the Metallic Noise Concern of a Dual-Mass Flywheel in Real-World Usage Conditions

2021-10-01
2021-28-0249
Dual mass flywheel (DMF) is an excellent solution to improve the noise, vibration, and harshness (NVH) characteristic of any vehicle by isolating the driveline from the engine torsional vibrations. For the same reason, DMF’s are widely used in high power-density diesel and gasoline engines. However, the real-world usage conditions pose a lot of challenges to the robustness of the DMF. In the present work, by capturing the Real-World Usage Profile (RWUP) conditions, a new methodology is developed to evaluate the robustness of a DMF fitted in a Sports utility vehicle (SUV). Ventilation holes are provided on clutch housing to improve convective heat transfer. Improvement in convective heat transfer will increase the life and will reduce clutch burning concerns. Cities like Mumbai, Chennai, Bangalore, roads will have clogged waters during rainy season. When the vehicle was driven in such roads, water enters inside the clutch housing through ventilation holes.
Technical Paper

Aerodynamic Performance Assessment on Typical SUV Car Model by On-Road Surface Pressure Mapping Method

2021-10-01
2021-28-0188
Aerodynamics of on-road vehicles has come to the limelight in the recent years. Better aerodynamic design of vehicle would improve vehicle fuel efficiency with increased acceleration performance. To obtain best aerodynamic body, the series of design modifications and different testing methodologies must be involved in vehicle design and validation phase. Wind tunnel aerodynamic force measurement, road load determination and computational fluid dynamics were the common methods used to evaluate the aerodynamic behavior of the vehicle body. As a novel approach, the present work discusses about the on-road (Real time) testing methodology that is aimed to evaluate the aerodynamic performance of vehicle body using surface pressure mapping. A 64-Channel digital pressure scanner has been utilized in this work for mapping the pressure at different locations of the typical vehicle body.
Technical Paper

Customer Usage Profile based Luggage Compartment Development at Concept Phase

2021-10-01
2021-28-0153
The SAE J1100 based standard cargo volume index methods and predefined luggage objects are very specific to United States population. The European luggage volume calculation and standard luggage calculations are primarily based on DIN and ISO standards. Luggage volume declaration by manufacturers are based on any of these methods. The calculations are complicated and there is a possibility of declaring different values for similar luggage compartments. The major purchase decision of vehicle is based on its luggage capacity and current methods are very limited to make an intelligent decision by a customer. Market specific customer usage patterns for luggage requirements and protecting them in vehicle architecture upfront in concept stage is important to retain the market position and buying preference of customers. The usage patterns is collected from customer clinics and marketing inputs.
Technical Paper

Chain Load Optimization through Fuel Pump Lobe Phasing and CAE Simulations for a BS6 Compliant Diesel Engine

2021-10-01
2021-28-0163
The introduction of CAFE (Corporate Average Fuel Economy) norms has put a lot of importance on improving the fuel economy of passenger car vehicles. One of the areas to improve the fuel economy is by reducing engine friction. Camshaft drive torque reduction is one such area that helps in engine friction reduction. This paper explains the camshaft drive torque optimization work done on a passenger car Diesel engine with DOHC (double overhead camshaft). The exhaust camshaft of the engine drives the high-pressure Fuel Injection Pump (FIP) in addition to valve actuation. Camshaft drive torque is reduced by reducing the chain load. This is done through optimum phasing of the FIP lobe that drives the fuel injection pump and the cam lobe actuating the exhaust valves. Additional boundary condition for the phasing is ensuring that the FIP lobe is in the fall region of its profile while the piston is at TDC. This helps in avoiding rail pressure fluctuation.
Technical Paper

Selection of Gear Ratio for Smooth Gear Shifting

2012-09-24
2012-01-2005
Manual transmissions are characterized by gear ratios that are selectable by locking selected gear pairs to the output shaft inside the transmission. Top gear is selected to get a maximum speed and is limited by the engine power, speed and the fuel economy. Lower gears are selected to get maximum speed at maximum gradient. Lower gears are also expected to give creeping speed to avoid usage of clutch and brake in city traffic. Selection of intermediate gears is such that it provides a smoother gear shift. Gear spacing is done in geometric progression. Spacing between the higher gears is usually closer than in the lower gears because drivers shift more often between the lower gears. This is opposed to the conventional idea of progressive spacing where higher gears had more space between them. An objective method is provided for selecting gear ratios for use in vehicle transmission having multiple selectable gears.
Technical Paper

Functional Safety - Progressing Towards Safer Mobility

2013-11-27
2013-01-2841
Increasing complexity in E/E architecture poses several challenges in developing comfortable, clean and safe cars. This mandates robust processes to mitigate potential hazards due to malfunction of electronic systems throughout the product life cycle. With the advent of ISO 26262 [1] which provides guidelines for developing safe cars, the process is getting standardized towards safer mobility. In this paper, the functional safety process is briefly covered and a case study of Hazard Analysis and Risk Assessment for specific E/E system is presented. An in-house tool developed for functional safety process and management is covered.
X