Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Variation in Automotive Shock Absorber Damping Characteristics & Their Effects on Ride Comfort Attribute and Vehicle Yaw Response

2021-09-22
2021-26-0081
In a Passive suspension, a shock absorber generates damping force by pressurizing the oil flow between chambers. Typically, vehicle responds with suspension deflection, which significantly depends on damping forces and suspension velocity. Tuning dampers for various roads and steering input is an iterative balancing process. In any setting, damping force w.r.t velocity is tuned for optimum ride and handling performance. Practically, to achieve a balance between the two is a tedious task as the choices & arrangements of inner parts like piston, port, valve etc., which defines the forces set up [soft / hard] are almost infinite. The objective of this paper is to measure, objectify and evaluate the performance of two such optimum setting in various ride and handling events. A passenger car set up with an optimum soft & hard suspension damping force is studied for various ride and handling sub-attributes and their conflicts are examined in detail from a performance point of view:
Technical Paper

Evaluating Effects of Roll Stiffness Change at Front and Rear Axles on Vehicle Maneuverability and Stability

2019-11-21
2019-28-2406
To cater the push towards “Vehicle Light Weighting”, both sprung and unsprung mass are being reduced. This results in reduced stiffness and thus has a profound undesirable effect on the overall vehicle handling. To understand the effect of different reduction ratios of sprung to unsprung mass; it is desired to understand how changes in stiffness affect the overall vehicle handling characteristics. Therefore, the study was conducted to experiment with different values of roll stiffness, at both front and rear axles and comparing the frequency response and phase change of Yaw Gain observed through a Pulse Input test. The present work is further correlated with subjective feedback to predict the shift in vehicle balance and handling characteristics.
X