Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Modeling the Cold Start of the Ford 3.5L V6 EcoBoost Engine

2009-04-20
2009-01-1493
Optimization of the engine cold start is critical for gasoline direct injection (GDI) engines to meet increasingly stringent emission regulations, since the emissions during the first 20 seconds of the cold start constitute more than 80% of the hydrocarbon (HC) emissions for the entire EPA FTP75 drive cycle. However, Direct Injection Spark Ignition (DISI) engine cold start optimization is very challenging due to the rapidly changing engine speed, cold thermal environment and low cranking fuel pressure. One approach to reduce HC emissions for DISI engines is to adopt retarded spark so that engines generate high heat fluxes for faster catalyst light-off during the cold idle. This approach typically degrades the engine combustion stability and presents additional challenges to the engine cold start. This paper describes a CFD modeling based approach to address these challenges for the Ford 3.5L V6 EcoBoost engine cold start.
Journal Article

Enabling Flex Fuel Vehicle Emissions Testing – Test Cell Modifications and Data Improvements

2009-04-20
2009-01-1523
The challenges of flex-fuel vehicle (FFV) emissions measurements have recently come to the forefront for the emissions testing community. The proliferation of ethanol blended gasoline in fractions as high as 85% has placed a new challenge in the path of accurate measures of NMHC and NMOG emissions. Test methods need modification to cope with excess amounts of water in the exhaust, assure transfer and capture of oxygenated compounds to integrated measurement systems (impinger and cartridge measurements) and provide modal emission rates of oxygenated species. Current test methods fall short of addressing these challenges. This presentation will discuss the challenges to FFV testing, modifications made to Ford Motor Company’s Vehicle Emissions Research Laboratory test cells, and demonstrate the improvements in recovery of oxygenated species from the vehicle exhaust system for both regulatory measurements and development measurements.
Journal Article

Applications of CFD Modeling in GDI Engine Piston Optimization

2009-06-15
2009-01-1936
This paper describes a CFD modeling based approach to address design challenges in GDI (gasoline direct injection) engine combustion system development. A Ford in-house developed CFD code MESIM (Multi-dimensional Engine Simulation) was applied to the study. Gasoline fuel is multi-component in nature and behaves very differently from the single component fuel representation under various operating conditions. A multi-component fuel model has been developed and is incorporated in MESIM code. To apply the model in engine simulations, a multi-component fuel recipe that represents the vaporization characteristics of gasoline is also developed using a numerical model that simulates the ASTM D86 fuel distillation experimental procedure. The effect of the multi-component model on the fuel air mixture preparations under different engine conditions is investigated. The modeling approach is applied to guide the GDI engine piston designs.
Journal Article

Assessment of Multiple Injection Strategies in a Direct-Injection Hydrogen Research Engine

2009-06-15
2009-01-1920
Hydrogen is widely considered a promising fuel for future transportation applications for both, internal combustion engines and fuel cells. Due to their advanced stage of development and immediate availability hydrogen combustion engines could act as a bridging technology towards a wide-spread hydrogen infrastructure. Although fuel cell vehicles are expected to surpass hydrogen combustion engine vehicles in terms of efficiency, the difference in efficiency might not be as significant as widely anticipated [1]. Hydrogen combustion engines have been shown capable of achieving efficiencies of up to 45 % [2]. One of the remaining challenges is the reduction of nitric oxide emissions while achieving peak engine efficiencies. This paper summarizes research work performed on a single-cylinder hydrogen direct injection engine at Argonne National Laboratory.
Journal Article

Effects of Secondary Air Injection During Cold Start of SI Engines

2010-10-25
2010-01-2124
An experimental study was performed to develop a more fundamental understanding of the effects of secondary air injection (SAI) on exhaust gas emissions and catalyst light-off characteristics during cold start of a modern SI engine. The effects of engine operating parameters and various secondary air injection strategies such as spark retardation, fuel enrichment, secondary air injection location and air flow rate were investigated to understand the mixing, heat loss, and thermal and catalytic oxidation processes associated with SAI. Time-resolved HC, CO and CO₂ concentrations were tracked from the cylinder exit to the catalytic converter outlet and converted to time-resolved mass emissions by applying an instantaneous exhaust mass flow rate model. A phenomenological model of exhaust heat transfer combined with the gas composition analysis was also developed to define the thermal and chemical energy state of the exhaust gas with SAI.
Journal Article

A New Responsive Model for Educational Programs for Industry: The University of Detroit Mercy Advanced Electric Vehicle Graduate Certificate Program

2010-10-19
2010-01-2303
Today's automotive and electronics technologies are evolving so rapidly that educators and industry are both challenged to re-educate the technological workforce in the new area before they are replaced with yet another generation. In early November 2009 Ford's Product Development senior management formally approved a proposal by the University of Detroit Mercy to transform 125 of Ford's “IC Engine Automotive Engineers” into “Advanced Electric Vehicle Automotive Engineers.” Two months later, the first course of the Advanced Electric Vehicle Program began in Dearborn. UDM's response to Ford's needs (and those of other OEM's and suppliers) was not only at the rate of “academic light speed,” but it involved direct collaboration of Ford's electric vehicle leaders and subject matter experts and the UDM AEV Program faculty.
Journal Article

Speciated Engine-Out Organic Gas Emissions from a PFI-SI Engine Operating on Ethanol/Gasoline Mixtures

2009-11-02
2009-01-2673
Engine-out HC emissions from a PFI spark ignition engine were measured using a gas chromatograph and a flame ionization detector (FID). Two port fuel injectors were used respectively for ethanol and gasoline so that the delivered fuel was comprised of 0, 25, 50, 75 and 100% (by volume) of ethanol. Tests were run at 1.5, 3.8 and 7.5 bar NIMEP and two speeds (1500 and 2500 rpm). The main species identified with pure gasoline were partial reaction products (e.g. methane and ethyne) and aromatics, whereas with ethanol/gasoline mixtures, substantial amounts of ethanol and acetaldehyde were detected. Indeed, using pure ethanol, 74% of total HC moles were oxygenates. In addition, the molar ratio of ethanol to acetaldehyde was determined to be 5.5 to 1. The amount (as mole fraction of total HC moles) of exhaust aromatics decreased linearly with increasing ethanol in the fuel, while oxygenate species correspondingly increased.
Journal Article

On the High Load Limit of Boosted Gasoline HCCI Engine Operating in NVO Mode

2010-04-12
2010-01-0162
The high load limit of a boosted homogeneous-charge-compression-ignition (HCCI) engine operating on negative-valve-overlap (NVO) was assessed. When operating under stoichiometric condition with no external dilution, the load, as measured by the net indicated mean effective pressure (NIMEP), increased with increase in manifold absolute pressure (MAP), and with decrease in trapped amount of residual gas. The maximum pressure rise rate (MPRR), however, also increased correspondingly. When the MAP and the amount of residual gas were adjusted so that the engine operating point could be held at a constant MPRR value, the NIMEP increased with the simultaneous decrease in MAP and residual until the misfire limit was reached. Therefore if a MPRR ceiling is imposed, the high load limit of an HCCI engine is at the intersection of the constraining MPRR line and the misfire line.
Journal Article

Ash Effects on Diesel Particulate Filter Pressure Drop Sensitivity to Soot and Implications for Regeneration Frequency and DPF Control

2010-04-12
2010-01-0811
Ash, primarily derived from diesel engine lubricants, accumulates in diesel particulate filters directly affecting the filter's pressure drop sensitivity to soot accumulation, thus impacting regeneration frequency and fuel economy. After approximately 33,000 miles of equivalent on-road aging, ash comprises more than half of the material accumulated in a typical cordierite filter. Ash accumulation reduces the effective filtration area, resulting in higher local soot loads toward the front of the filter. At a typical ash cleaning interval of 150,000 miles, ash more than doubles the filter's pressure drop sensitivity to soot, in addition to raising the pressure drop level itself. In order to evaluate the effects of lubricant-derived ash on DPF pressure drop performance, a novel accelerated ash loading system was employed to generate the ash and load the DPFs under carefully-controlled exhaust conditions.
Journal Article

Characteristics and Effects of Lubricant Additive Chemistry on Ash Properties Impacting Diesel Particulate Filter Service Life

2010-04-12
2010-01-1213
Ash accumulation in diesel particulate filters, mostly from essential lubricant additives, decreases the filter's soot storage capacity, adversely affects fuel economy, and negatively impacts the filter's service life. While the adverse effects of ash accumulation on DPF performance are well known, the underlying mechanisms controlling these effects are not. To address these issues, results of detailed measurements with specially formulated lubricants, correlating ash properties to individual lubricant additives and their effects on DPF pressure drop, are presented. Investigations using the specially-formulated lubricants showed ash consisting primarily of calcium sulfates to exhibit significantly increased flow resistance as opposed to ash primarily composed of zinc phosphates. Furthermore, ash accumulated along the filer walls was found to be packed approximately 25% denser than ash accumulated in the channel end-plugs.
Journal Article

The Effects of Charge Motion and Laminar Flame Speed on Late Robust Combustion in a Spark-Ignition Engine

2010-04-12
2010-01-0350
The effects of charge motion and laminar flame speeds on combustion and exhaust temperature have been studied by using an air jet in the intake flow to produce an adjustable swirl or tumble motion, and by replacing the nitrogen in the intake air by argon or CO₂, thereby increasing or decreasing the laminar flame speed. The objective is to examine the "Late Robust Combustion" concept: whether there are opportunities for producing a high exhaust temperature using retarded combustion to facilitate catalyst warm-up, while at the same time, keeping an acceptable cycle-to-cycle torque variation as measured by the coefficient of variation (COV) of the net indicated mean effective pressure (NIMEP). The operating condition of interest is at the fast idle period of a cold start with engine speed at 1400 RPM and NIMEP at 2.6 bar. A fast burn could be produced by appropriate charge motion. The combustion phasing is primarily a function of the spark timing.
Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
Journal Article

Oil Transport Cycle Model for Rotary Engine Oil Seals

2014-04-01
2014-01-1664
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. A model of the oil seals is developed to calculate internal oil consumption (oil leakage from the crankcase through the oil seals) as a function of engine geometry and operating conditions. The deformation of the oil seals trying to conform to housing distortion is calculated to balance spring force, O-ring and groove friction, and asperity contact and hydrodynamic pressure at the interface. A control volume approach is used to track the oil over a cycle on the seals, the rotor and the housing as the seals are moving following the eccentric rotation of the rotor. The dominant cause of internal oil consumption is the non-conformability of the oil seals to the housing distortion generating net outward scraping, particularly next to the intake and exhaust port where the housing distortion valleys are deep and narrow.
Journal Article

Visualization of the Rotary Engine Oil Transport Mechanisms

2014-04-01
2014-01-1665
The rotary engine provides high power density compared to piston engine, but one of its downside is higher oil consumption. In order to better understand oil transport, a laser induced fluorescence technique is used to visualize oil motion on the side of the rotor during engine operation. Oil transport from both metered oil and internal oil is observed. Starting from inside, oil accumulates in the rotor land during inward motion of the rotor created by its eccentric motion. Oil seals are then scraping the oil outward due to seal-housing clearance asymmetry between inward and outward motion. Cut-off seal does not provide an additional barrier to internal oil consumption. Internal oil then mixes with metered oil brought to the side of the rotor by gas leakage. Oil is finally pushed outward by centrifugal force, passes the side seals, and is thrown off in the combustion chamber.
Journal Article

A Dual Grid Curved Beam Finite Element Model of Piston Rings for Improved Contact Capabilities

2014-04-01
2014-01-1085
Piston rings are large contributors to friction losses in internal combustion engines. To achieve higher engine efficiency, low friction ring packs that can maintain good sealing performance must be designed. To support this effort, simulation tools have been developed to model the performance of piston rings during engine operation. However, the challenge of predicting oil consumption, blow by, and ring pack friction with sufficient accuracy remains. This is mostly due to the complexity of this system. Ring dynamics, deformation, interaction with liner and piston, gas and lubricant flow must all be studied together to make relevant predictions. In this paper, a new curved beam finite element model of piston rings is proposed. Ring structural deformation and contact with the liner are treated on two separate grids. A comparison with ring models in the literature and analytical solutions shows that it can provide accurate results efficiently.
Journal Article

Engine Friction Accounting Guide and Development Tool for Passenger Car Diesel Engines

2013-10-14
2013-01-2651
The field of automotive engineering has devoted much research to reduce fuel consumption to attain sustainable energy usage. Friction reductions in powertrain components can improve engine fuel economy. Quantitative accounting of friction is complex because it is affected by many physical aspects such as oil viscosity, temperature, surface roughness and component rotation speed. The purpose of this paper is two-fold: first, to develop a useful tool for evaluating the friction in engine and accessories based on test data; second, to exercise the tool to evaluate the fuel economy gain in a drive cycle for several friction reduction technologies.
Journal Article

Effects of Non-Associated Flow on Residual Stress Distributions in Crankshaft Sections Modeled as Pressure-Sensitive Materials under Fillet Rolling

2015-04-14
2015-01-0602
In this paper, the evolution equation for the active yield surface during the unloading/reloading process based on the pressure-sensitive Drucker-Prager yield function and a recently developed anisotropic hardening rule with a non-associated flow rule is first presented. A user material subroutine based on the anisotropic hardening rule and the constitutive relation was written and implemented into the commercial finite element program ABAQUS. A two-dimensional plane strain finite element analysis of a crankshaft section under fillet rolling was conducted. After the release of the roller, the magnitude of the compressive residual hoop stress for the material with consideration of pressure sensitivity typically for cast irons is smaller than that without consideration of pressure sensitivity. In addition, the magnitude of the compressive residual hoop stress for the pressure-sensitive material with the non-associated flow rule is smaller than that with the associated flow rule.
Technical Paper

Development of a PN Surrogate Model Based on Mixture Quality in a GDI Engine

2021-09-05
2021-24-0013
A novel surrogate model is presented, which predicts the engine-out Particle Number (PN) emissions of a light-duty, spray-guided, turbo-charged, GDI engine. The model is developed through extensive CFD analysis, carried out using the Siemens Simcenter STAR-CD, and considers a range of part-load operating conditions and single-variable sweeps where control parameters such as start of injection and injection pressure are varied in isolation. The work is attached to the Ford-led APC6 DYNAMO project, which aims to improve efficiency and reduce harmful emissions from the next generation of gasoline engines. The CFD work focused on the air exchange, fuel spray and mixture preparation stages of the engine cycle. A combined Rosin-Rammler and Reitz-Diwakar model, calibrated over a wide range of injection pressure, is used to model fuel atomization and secondary droplets break-up.
Technical Paper

Probing Spark Discharge Behavior in High-speed Cross-flows through Modeling and Experimentation

2020-04-14
2020-01-1120
This paper presents a combined numerical and experimental investigation of the characteristics of spark discharge in a spark-ignition engine. The main objective of this work is to gain insights into the spark discharge process and early flame kernel development. Experiments were conducted in an inert medium within an optically accessible constant-volume combustion vessel. The cross-flow motion in the vessel was generated using a previously developed shrouded fan. Numerical modeling was based on an existing discharge model in the literature developed by Kim and Anderson. However, this model is applicable to a limited range of gas pressures and flow fields. Therefore, the original model was evaluated and improved to predict the behavior of spark discharge at pressurized conditions up to 45 bar and high-speed cross-flows up to 32 m/s. To accomplish this goal, a parametric study on the spark channel resistance was conducted.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
X