Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Alcohol Fueled Heavy Duty Vehicles Using Clean, High Efficiency Engines

2010-10-25
2010-01-2199
Non-petroleum based liquid fuels are essential for reducing oil dependence and greenhouse gas generation. Increased substitution of alcohol fuel for petroleum based fuels could be achieved by 1) use in high efficiency spark ignition engines that are employed for heavy duty as well as light duty operation and 2) use of methanol as well as ethanol. Methanol is the liquid fuel that is most efficiently produced from thermo-chemical gasification of coal, natural gas, waste or biomass. Ethanol can also be produced by this process but at lower efficiency and higher cost. Coal derived methanol is in limited initial use as a transportation fuel in China. Methanol could potentially be produced from natural gas at an economically competitive fuel costs, and with essentially the same greenhouse gas impact as gasoline. Waste derived methanol could also be an affordable low carbon fuel.
Technical Paper

In-Cylinder Fuel Blending of Gasoline/Diesel for Improved Efficiency and Lowest Possible Emissions on a Multi-Cylinder Light-Duty Diesel Engine

2010-10-25
2010-01-2206
In-cylinder fuel blending of gasoline with diesel fuel is investigated on a multi-cylinder light-duty diesel engine as a strategy to control in-cylinder fuel reactivity for improved efficiency and lowest possible emissions. This approach was developed and demonstrated at the University of Wisconsin through modeling and single-cylinder engine experiments. The objective of this study is to better understand the potential and challenges of this method on a multi-cylinder engine. More specifically, the effect of cylinder-to-cylinder imbalances and in-cylinder charge motion as well as the potential limitations imposed by real-world turbo-machinery were investigated on a 1.9-liter four-cylinder engine. This investigation focused on one engine condition, 2300 rpm, 5.5 bar net mean effective pressure (NMEP). Gasoline was introduced with a port-fuel-injection system.
Technical Paper

Loading and Regeneration Analysis of a Diesel Particulate Filter with a Radio Frequency-Based Sensor

2010-10-25
2010-01-2126
Accurate knowledge of diesel particulate filter (DPF) particulate matter (PM) loading is critical for robust and efficient operation of the combined engine-exhaust aftertreatment system. Furthermore, upcoming on-board diagnostics regulations require on-board technologies to evaluate the status of the DPF. This work describes the application of radio frequency (RF) - based sensing techniques to accurately measure DPF particulate matter levels. A 1.9L GM turbo diesel engine and a DPF with an RF-sensor were studied. Direct comparisons between the RF measurement and conventional pressure-based methods were made. Further analysis of the particulate matter loading rates was obtained with a mass-based total PM emission measurement instrument (TEOM) and DPF gravimetric measurements.
Technical Paper

Real-Time Engine and Aftertreatment System Control Using Fast Response Particulate Filter Sensors

2016-04-05
2016-01-0918
Radio frequency (RF)-based sensors provide a direct measure of the particulate filter loading state. In contrast to particulate matter (PM) sensors, which monitor the concentration of PM in the exhaust gas stream for on-board diagnostics purposes, RF sensors have historically been applied to monitor and control the particulate filter regeneration process. This work developed an RF-based particulate filter control system utilizing both conventional and fast response RF sensors, and evaluated the feasibility of applying fast-response RF sensors to provide a real-time measurement of engine-out PM emissions. Testing with a light-duty diesel engine equipped with fast response RF sensors investigated the potential to utilize the particulate filter itself as an engine-out soot sensor.
Technical Paper

Intra-Catalyst Reductant Chemistry and Nox Conversion of Diesel Lean Nox Traps at Various Stages of Sulfur Loading

2006-10-16
2006-01-3423
Due to increasingly stringent emissions regulations, Lean NOx Trap (LNT) catalysts are being researched as a potential solution for diesel engine emissions reduction. LNTs are practical for diesel NOx reduction due to their ability to reduce NOx from the O2 rich environment produced by diesel engines. LNTs function by storing NOx on the catalyst surface during efficient lean operation then, under rich conditions, releasing and reducing the trapped NOx. One method of producing this rich environment which regenerates a LNT involves manipulating the fuel injection parameters and throttling the air intake. This process is called in-cylinder regeneration. Experiments will be described here in which a 1.7 L common rail diesel engine has been used to regenerate LNTs at various stages of sulfur exposure, a known poison of the LNT.
Technical Paper

Effects of NOX Storage Component on Ammonia Formation in TWC for Passive SCR NOX Control in Lean Gasoline Engines

2018-04-03
2018-01-0946
A prototype three-way catalyst (TWC) with NOX storage component was evaluated for ammonia (NH3) generation on a 2.0-liter BMW lean burn gasoline direct injection engine as a component in a passive ammonia selective catalytic reduction (SCR) system. The passive NH3 SCR system is a potential approach for controlling nitrogen oxides (NOX) emissions from lean burn gasoline engines. In this system, NH3 is generated over a close-coupled TWC during periodic slightly-rich engine operation and subsequently stored on an underfloor SCR catalyst. Upon switching to lean, NOX passes through the TWC and is reduced by the stored NH3 on the SCR catalyst. Adding a NOX storage component to a TWC provides two benefits in the context of a passive SCR system: (1) enabling longer lean operation by storing NOX upstream and preserving NH3 inventory on the downstream SCR catalyst; and (2) increasing the quantity and rate of NH3 production during rich operation.
Technical Paper

In-Cylinder Production of Hydrogen During Net-Lean Diesel Operation

2006-04-03
2006-01-0212
Hydrogen (H2) is an excellent reductant, and has been shown to be highly effective when introduced into a variety of catalysts such as three-way catalysts, lean NOx traps (LNTs), and hydrocarbon lean NOx catalysts (also termed hydrocarbon selective catalytic reduction (SCR) catalysts). Furthermore, since lean-burn engines offer improved fuel efficiency yet difficult NOx emission control, H2 production during lean operation for the purpose of NOx reduction could be beneficial. On-board generation of hydrogen is being explored via catalytic or plasma-based reformers. A possible alternative to these add-on systems is generation of the H2 in-cylinder with standard fuel injection hardware. This paper details experiments relating to the production and measurement of H2 under net-lean operation in a common-rail diesel engine. In-cylinder fuel control is used to tailor the combustion process such that H2 is generated while maintaining a lean Air:Fuel ratio in the bulk exhaust gas.
Technical Paper

Dual-Fuel Gasoline-Alcohol Engines for Heavy Duty Trucks: Lower Emissions, Flexible-Fuel Alternative to Diesel Engines

2018-04-03
2018-01-0888
Long-haul and other heavy-duty trucks, presently almost entirely powered by diesel fuel, face challenges meeting worldwide needs for greatly reducing nitrogen oxide (NOx) emissions. Dual-fuel gasoline-alcohol engines could potentially provide a means to cost-effectively meet this need at large scale in the relatively near term. They could also provide reductions in greenhouse gas emissions. These spark ignition (SI) flexible fuel engines can provide operation over a wide fuel range from mainly gasoline use to 100% alcohol use. The alcohol can be ethanol or methanol. Use of stoichiometric operation and a three-way catalytic converter can reduce NOx by around 90% relative to emissions from diesel engines with state of the art exhaust treatment.
Technical Paper

Assessing Reductant Chemistry During In-Cylinder Regeneration of Diesel Lean NOx Traps

2004-10-25
2004-01-3023
Lean NOx Trap (LNT) catalysts are capable of reducing NOx in lean exhaust from diesel engines. NOx is stored on the catalyst during lean operation; then, under rich exhaust conditions, the NOx is released from and reduced by the catalyst. The process of NOx release and reduction is called regeneration. One method of obtaining the rich conditions for regeneration is to inject additional fuel into the engine cylinders while throttling the engine intake air flow to effectively run the engine at rich air:fuel ratios; this method is called “in-cylinder” regeneration. In-cylinder regeneration of LNT catalysts has been demonstrated and is a candidate emission control technique for commercialization of light-duty diesel vehicles to meet future emission regulations. In the study presented here, a 1.7-liter diesel engine with a LNT catalyst system was used to evaluate in-cylinder regeneration techniques.
Technical Paper

Continuous Particulate Filter State of Health Monitoring Using Radio Frequency Sensing

2018-04-03
2018-01-1260
Reliable means for on-board detection of particulate filter failures or malfunctions are needed to meet diagnostics (OBD) requirements. Detecting these failures, which result in tailpipe particulate matter (PM) emissions exceeding the OBD limit, over all operating conditions is challenging. Current approaches employ differential pressure sensors and downstream PM sensors, in combination with particulate filter and engine-out soot models. These conventional monitors typically operate over narrowly-defined time windows and do not provide a direct measure of the filter’s state of health. In contrast, radio frequency (RF) sensors, which transmit a wireless signal through the filter substrate provide a direct means for interrogating the condition of the filter itself.
Technical Paper

Developing Design Guidelines for an SCR Assembly Equipped for RF Sensing of NH3 Loading

2018-04-03
2018-01-1266
The Cu-zeolite (CuZ) SCR catalyst enables higher NOx conversion efficiency in part because it can store a significant amount of NH3. “NH3 storage control”, where diesel exhaust fluid (DEF) is dosed in accord with a target NH3 loading, is widely used with CuZ catalysts to achieve very high efficiency. The NH3 loading actually achieved on the catalyst is currently estimated through a stoichiometric calculation. With future high-capacity CuZ catalyst designs, it is likely that the accuracy of this NH3 loading estimate will become limiting for NOx conversion efficiency. Therefore, a direct measurement of NH3 loading is needed; RF sensing enables this. Relative to RF sensing of soot in a DPF (which is in commercial production), RF sensing of NH3 adsorbed on CuZ is more challenging. Therefore, more attention must be paid to the “microwave resonance cavity” created within the SCR assembly. The objective of this study was to develop design guidelines to enable and enhance RF sensing.
Technical Paper

Direct Measurement of Aftertreatment System Stored Water Levels for Improved Dew Point Management Using Radio Frequency Sensing

2019-04-02
2019-01-0739
Reducing cold-start emissions to meet increasingly stringent emissions limits requires fast activation of exhaust system sensors and aftertreatment control strategies. One factor delaying the activation time of current exhaust sensors, such as NOx and particulate matter (PM) sensors, is the need to protect these sensors from water present in the exhaust system. Exposure of the ceramic sensing element to water droplets can lead to thermal shock and failure of the sensor. In order to prevent such failures, various algorithms are employed to estimate the dew point of the exhaust gas and determine when the exhaust system is sufficiently dry to enable safe sensor operation. In contrast to these indirect, model-based approaches, this study utilized radio frequency (RF) sensors typically applied to monitor soot loading levels in diesel and gasoline particulate filters, to provide a direct measurement of stored water levels on the ceramic filter elements themselves.
Technical Paper

Particulate Matter Characterization of Reactivity Controlled Compression Ignition (RCCI) on a Light Duty Engine

2014-04-01
2014-01-1596
Low temperature combustion (LTC) has been shown to yield higher brake thermal efficiencies with lower NOx and soot emissions, relative to conventional diesel combustion (CDC). However, while demonstrating low soot carbon emissions it has been shown that LTC operation does produce particulate matter whose composition appears to be much different than CDC. The particulate matter emissions from dual-fuel reactivity controlled compression ignition (RCCI) using gasoline and diesel fuel were investigated in this study. A four cylinder General Motors 1.9L ZDTH engine was modified with a port-fuel injection system while maintaining the stock direct injection fuel system. The pistons were modified for highly premixed operation and feature an open shallow bowl design. RCCI operation was carried out using a certification grade 97 research octane gasoline and a certification grade diesel fuel.
Technical Paper

Performance Maps of Turbocharged SI Engines with Gasoline-Ethanol Blends: Torque, Efficiency, Compression Ratio, Knock Limits, and Octane

2014-04-01
2014-01-1206
1 Downsizing and turbocharging a spark-ignited engine is becoming an important strategy in the engine industry for improving the efficiency of gasoline engines. Through boosting the air flow, the torque is increased, the engine can thus be downsized, engine friction is reduced in both absolute and relative terms, and engine efficiency is increased. However knock onset with a given octane rating fuel limits both compression ratio and boost levels. This paper explores the operating limits of a turbocharged engine, with various gasoline-ethanol blends, and the interaction between compression ratio, boost levels, and spark retard, to achieve significant increases in maximum engine mean effective pressure and efficiency.
Technical Paper

Flex Fuel Gasoline-Alcohol Engine for Near Zero Emissions Plug-In Hybrid Long-Haul Trucks

2019-04-02
2019-01-0565
Internal combustion engines for plug-in hybrid heavy duty trucks, especially long haul trucks, could play an important role in facilitating use of battery power. Power from a low carbon electricity source could thereby be employed without an unattractive vehicle cost increase or range limitation. The ideal engine should be powered by a widely available affordable liquid fuel, should minimize air pollutant emissions, and should provide lower greenhouse gas emissions. Diesel engines could fall short in meeting these objectives, especially because of high emissions. In this paper we analyze the potential for a flex fuel gasoline-alcohol engine approach for a series hybrid powertrain. In this approach the engine would provide comparable (or possibly greater) efficiency than a diesel engine while also providing 90 around lower NOx emissions than present cleanest diesel engine vehicles. Ethanol or methanol would be employed to increase knock resistance.
Technical Paper

Engine-Aftertreatment in Closed-Loop Modeling for Heavy Duty Truck Emissions Control

2019-04-02
2019-01-0986
An engine-aftertreatment computational model was developed to support in-loop performance simulations of tailpipe emissions and fuel consumption associated with a range of heavy-duty (HD) truck drive cycles. For purposes of this study, the engine-out exhaust dynamics were simulated with a combination of steady-state engine maps and dynamic correction factors that accounted for recent engine operating history. The engine correction factors were approximated as dynamic first-order lags associated with the thermal inertia of the major engine components and the rate at which engine-out exhaust temperature and composition vary as combustion heat is absorbed or lost to the surroundings. The aftertreatment model included catalytic monolith components for diesel exhaust oxidation, particulate filtration, and selective catalytic reduction of nitrogen oxides (NOx) with urea.
X