Refine Your Search

Topic

Search Results

Video

Achieving a Lightweight and Steel-Intensive Body Structure for Alternative Powertrains

2012-02-14
FutureSteelVehicle's (FSV) objective is to develop detailed design concepts for a radically different steel body structure for a compact Battery Electric Vehicle (BEV). It also will identify structure changes to accommodate larger Plug-In Hybrid (PHEV) and Fuel Cell (FCEV) vehicle variants. The presentation will demonstrate seven optimized structural sub-systems that contribute to the program's 35 percent mass reduction goals and meet its safety and life cycle emissions targets. It will explain the advanced design optimization process used and the resulting aggressive steel concepts. Presenter Jody R. Shaw, US Steel
Journal Article

Development of Empirical Shear Fracture Criterion for AHSS

2010-04-12
2010-01-0977
The conventional forming limit curve (FLC) has been widely and successfully used as a failure criterion to detect localized necking in stamping. However, in stamping advanced high strength steels (AHSS), under certain circumstances such as stretching-bending over a small die radius, the sheet metal fails much earlier than predicted by the FLC. This type of failure on the die radius is commonly called “shear fracture.” In this paper, the laboratory Stretch-Forming Simulator (SFS) and the Bending under Tension (BUT) tester are used to study shear fracture occurring during both early and later stages of stamping. Results demonstrate that the occurrence of shear fracture depends on the combination of the radius-to-thickness (R/T) ratio and the tension/stretch level applied to the sheet during stretching or drawing. Based on numerous experimental results, an empirical shear fracture limit curve or criterion is obtained.
Journal Article

AHSS Shear Fracture Predictions Based on a Recently Developed Fracture Criterion

2010-04-12
2010-01-0988
One of the issues in stamping of advanced high strength steels (AHSS) is the stretch bending fracture on a sharp radius (commonly referred to as shear fracture). Shear fracture typically occurs at a strain level below the conventional forming limit curve (FLC). Therefore it is difficult to predict in computer simulations using the FLC as the failure criterion. A modified Mohr-Coulomb (M-C) fracture criterion has been developed to predict shear fracture. The model parameters for several AHSS have been calibrated using various tests including the butter-fly shaped shear test. In this paper, validation simulations are conducted using the modified (M-C) fracture criterion for a dual phase (DP) 780 steel to predict fracture in the stretch forming simulator (SFS) test and the bending under tension (BUT) test. Various deformation fracture modes are analyzed, and the range of usability of the criterion is identified.
Journal Article

The Effect of Welding Dimensional Variability on the Fatigue Life of Gas Metal Arc Welded Joints

2011-04-12
2011-01-0196
Gas Metal Arc Welding (GMAW) is widely employed for joining relatively thick sheet steels in automotive body-in-white structures and frames. The GMAW process is very flexible for various joint geometries and has relatively high welding speed. However, fatigue failures can occur at welded joints subjected to various types of loads. Thus, vehicle design engineers need to understand the fatigue characteristics of welded joints produced by GMAW. Currently, automotive structures employ various advanced high strength steels (AHSS) such as dual-phase (DP) and transformation-induced plasticity (TRIP) steels to produce lighter vehicle structures with improved safety performance and fuel economy, and reduced harmful emissions. Relatively thick gages of AHSS are commonly joined to conventional high strength steels and/or mild steels using GMAW in current body-in-white structures and frames.
Technical Paper

Making the Case for a Next Generation Automotive Electrical System

1998-10-19
98C006
Introduction of an array of new electrical and electronic features into future vehicles is generating vehicle electrical power requirements that exceed the capabilities of today's 14 volt electrical systems. In the near term (5 to 10 years), the existing 14V system will be marginally capable of supporting the expected additional loads with escalating costs for the associated charging system. However, significant increases in vehicle functional content are expected as future requirements to meet longer-term (beyond 10 years) needs in the areas of emission control, fuel economy, safety, and passenger comfort. A higher voltage electrical system will be required to meet these future requirements. This paper explores the functional needs that will mandate a higher voltage system and the benefits derivable from its implementation.
Technical Paper

Direct Conversion of Heat to Electricity

2008-10-20
2008-21-0049
The prime candidate for direct conversion from heat to electricity has historically been thermoelectric energy conversion. More recently, advances in thermophotovoltaic systems render them potentially interesting. Neither class of systems is used in automobiles to any significant extent today, and neither class of systems is poised on the brink of a large-scale adoption. In this paper, the characteristics of these types of energy conversion are discussed, with special emphasis on their utility in automobiles.
Technical Paper

Characterization of Structural, Volume and Pressure Components to Space Suit Joint Rigidity

2009-07-12
2009-01-2535
Gas-pressurized space suits are highly resistive to astronaut movement, and this resistance has been previously explained by volume and/or structural effects. This study proposed that an additional effect, pressure effects due to compressing/expanding the internal gas during joint articulation, also inhibits mobility. EMU elbow torque components were quantified through hypobaric testing. Structural effects dominated at low joint angles, and volume effects were found to be the primary torque component at higher angles. Pressure effects were found to be significant only at high joint angles (increased flexion), contributing up to 8.8% of the total torque. These effects are predicted to increase for larger, multi-axis joints. An active regulator system was developed to mitigate pressure effects, and was found to be capable of mitigating repeated pressure spikes caused by volume changes.
Technical Paper

Crash Safety of Lithium-Ion Batteries Towards Development of a Computational Model

2010-04-12
2010-01-1078
Battery packs for Hybrids, Plug-in Hybrids, and Electric Vehicles are assembled from a system of modules (sheets) with a tight sheet metal casing around them. Each module consists of an array of individual cells which vary in the composition of electrodes and separator from one manufacturer to another. In this paper a general procedure is outlined on the development of a constitutive and computational model of a cylindrical cell. Particular emphasis is placed on correct prediction of initiation and propagation of a tearing fracture of the steel can. The computational model correctly predicts rupture of the steel can which could release aggressive chemicals, fumes, or spread the ignited fire to the neighboring cells. The initiation site of skin fracture depends on many factors such as the ductility of the casing material, constitutive behavior of the system of electrodes, and type of loading.
Technical Paper

A Practical Failure Limit for Sheared Edge Stretching of Automotive Body Panels

2010-04-12
2010-01-0986
Edge cracking is one of the major formability concerns in advanced high strength steel (AHSS) stamping. Although finite element analysis (FEA) together with the Forming Limit Diagram has been widely used, it has not effectively predicted edge cracking. Primary problems in developing a methodology to insure that parts are safe from edge cracking are the lack of an effective failure criterion and a simple and accurate measurement method that is not only usable in both die tryout and production but also can be verified by finite element analysis. The intent of this study is to develop a methodology to ensure that parts with internal cutouts, such as a body side panel can be produced without edge cracking. During tryout and production, edge cracking has traditionally been detected by visual examination, but this approach is not adequate for ensuring freedom from edge cracking.
Technical Paper

Inverse Method for Measuring Weld Temperatures during Resistance Spot Welding

2001-03-05
2001-01-0437
A new monitoring system predicts the progression of welding temperature fields during resistance spot welding. The system captures welding voltages and currents to predict contact diameters and simulate temperature fields. The system accurately predicts fusion lines and heat-affected zones. Accuracy holds even for electrode tips used for a few thousand welds of zinc coated steels.
Technical Paper

Crashworthiness of Thin Ultra-light Stainless Steel Sandwich Sheets: From the Design of Core Materials to Structural Applications

2004-03-08
2004-01-0886
Thin sandwich sheets hold a promise for widespread use in automotive industry due to their good crash and formability properties. In this paper, thin stainless steel sandwich sheets with low-density core materials are investigated with regard to their performance in crashworthiness applications. The total thickness of the sandwich materials is about 1.2mm: 0.2mm thick facings and a 0.8mm thick sandwich core. Throughout the crushing of prismatic sandwich profiles, the sandwich facings are bent and stretched while the sandwich core is crushed under shear loading. Thus, a high shear crushing strength of the sandwich core material is beneficial for the overall energy absorption of the sandwich profile. It is shown theoretically that the weight specific shear crushing strength of hexagonal metallic honeycombs is higher than the one of fiber cores - irrespective of their relative density or microstructural geometry.
Technical Paper

Achieving An Affordable Low Emission Steel Vehicle; An Economic Assessment of the ULSAB-AVC Program Design

2002-03-04
2002-01-0361
Vehicle weight reduction, reduced costs and improved safety performance are the main driving forces behind material selection for automotive applications. These goals are conflicting in nature and solutions will be realized by innovative design, advanced material processing and advanced materials. Advanced high strength steels are engineered materials that provide a remarkable combination of formability, strength, ductility, durability, strain-rate sensitivity and strain hardening characteristics essential to meeting the goals of automotive design. These characteristics act as enablers to cost- and mass-effective solutions. The ULSAB-AVC program demonstrates a solution to these conflicting goals and the advantages that are possible with the utilization of the advance high strength steels and provides a prediction of the material content of future body structures.
Technical Paper

Perforation Corrosion Performance of Autobody Steel Sheet in On-Vehicle and Accelerated Tests

2003-03-03
2003-01-1238
The Auto/Steel Partnership Corrosion Project Team has completed a perforation corrosion test program consisting of on-vehicle field exposures and various accelerated tests. Steel sheet products with eight combinations of metallic and organic coatings were tested, utilizing a simple crevice coupon design. On-vehicle exposures were conducted in St. John's and Detroit for up to seven years to establish a real-world performance standard. Identical test specimens were exposed to the various accelerated tests, and the results were compared to the real-world standard. This report documents the results of these tests, and compares the accelerated test results (including SAE J2334, GM9540P, Ford APGE, CCT-I, ASTM B117, South Florida Modified Volvo, and Kure Beach (25-meter) exposures) to the on-vehicle tests. The results are compared in terms of five criteria: extent of corrosion, rank order of material performance, degree of correlation, acceleration factor, and control of test environment.
Technical Paper

Achieving a Lightweight and Steel-Intensive Body Structure for Alternative Powertrains

2011-04-12
2011-01-0425
FutureSteelVehicle’s (FSV) objective is to develop detailed design concepts for a radically different steel body structure for a compact Battery Electric Vehicle (BEV). It also will identify structure changes to accommodate larger Plug-In Hybrid (PHEV) and Fuel Cell (FCEV) vehicle variants. The paper will demonstrate seven optimised structural sub-systems that contribute to the programme's 35 percent mass reduction goals and meet its safety and life cycle emissions targets. It will explain the advanced design optimisation process used and the resulting aggressive steel concepts.
Technical Paper

A Methodology for Evaluating Body Architecture Concepts Using Technical Cost Modeling

2011-04-12
2011-01-0767
The ability to make accurate decisions concerning early body-in-white architectures is critical to an automaker since these decisions often have long term cost and weight impacts. We address this need with a methodology which can be used to assist in body architecture decisions using process-based technical cost modeling (TCM) as a filter to evaluate alternate designs. Despite the data limitations of early design concepts, TCM can be used to identify key trends for cost-effectiveness between design variants. A compact body-in-white architecture will be used as a case study to illustrate this technique. The baseline steel structure will be compared to several alternate aluminum intensive structures in the context of production volume.
Technical Paper

Measurement of Strain Distribution for Hole Expansion with Digital Image Correlation (DIC) System

2011-04-12
2011-01-0993
Advanced high strength steels (AHSS) are increasingly used in automotive industry. A major issue for AHSS stamping is edge cracking. This failure mode is difficult to predict by conventional forming limit curve (FLC). The material edge stretchability is mainly evaluated using the hole expansion test. In this study, digital Image Correlation (DIC) is applied for strain measurement. DIC is a non-contact, full field, high accuracy and direct measurement technique that provides more detailed information for the evolution of strains on the sheet surface. Tests were conducted for five AHSS and nine cases. This paper will explain in detail the DIC technique and its results.
Technical Paper

Chain Representations of Dimensional Control: A Producibility Input for Concurrent Concept Design

1998-06-02
981846
Two critical milestones that must be achieved during concept design are 1) definition of a product architecture that meets performance, producibility, and strategic objectives, and 2) estimation of the integration risk in each candidate concept. This paper addresses these issues by describing the role played by the producibility members of an Integrated Product Team (IPT) during concept design. Our focus is on the execution of the what we call the “chain method”, which illustrates the structure of function delivery in a concept in a simple pictorial way and helps the IPT to understand the advantages or disadvantages of using a modular or an integral product architecture. The producibility members play a central role in capturing and evaluating the chains for different candidate concepts and decompositions.
Technical Paper

A Study of Cycle-to-Cycle Variations in SI Engines Using a Modified Quasi-Dimensional Model

1996-05-01
961187
This paper describes the use of a modified quasi-dimensional spark-ignition engine simulation code to predict the extent of cycle-to-cycle variations in combustion. The modifications primarily relate to the combustion model and include the following: 1. A flame kernel model was developed and implemented to avoid choosing the initial flame size and temperature arbitrarily. 2. Instead of the usual assumption of the flame being spherical, ellipsoidal flame shapes are permitted in the model when the gas velocity in the vicinity of the spark plug during kernel development is high. Changes in flame shape influence the flame front area and the interaction of the enflamed volume with the combustion chamber walls. 3. The flame center shifts due to convection by the gas flow in the cylinder. This influences the flame front area through the interaction between the enflamed volume and the combustion chamber walls. 4. Turbulence intensity is not uniform in cylinder, and varies cycle-to-cycle.
Technical Paper

42 Volts - The View from Today

2004-10-18
2004-21-0094
A few years ago, the automobile industry agreed to adopt standards for a new voltage for the production and use of electrical power. The perception was near universal that 14 Volts was at the limits of its capability, and that 42 Volts would be adopted in a rush. The universal perception was wrong. Since then, much of the auto industry has encountered hard financial times. In a totally separate development, parts suppliers introduced innovations at 14 Volts, some of which a few years ago were thought to require 42 Volts. Today, there are 42-Volt cars and trucks for sale, but only at numbers far lower than necessary to begin to achieve economies of scale. But the factor which caused the industry to develop the 42 Volt standard, the growth of electricity use on motor vehicles, continues with no sign of letup. Further, the true technical obstacles to adoption of 42 Volts have been discovered and at least provisionally solved.
Technical Paper

Small Scale Research in Automobile Aerodynamics

1966-02-01
660384
This paper describes a three component strain gage balance designed to measure aerodynamic forces exerted on small automobile models when subjected to turbulence in an experimental wind tunnel. The instrument is described and the details of obtaining values with it are fully explained. Although tests were conducted on these models at quarter-scale Reynolds number, results agree closely with similar tests on larger models. The balance makes practical some unusual preliminary investigations before developing full-scale prototypes.
X