Refine Your Search

Topic

Search Results

Technical Paper

The Influence of Impact Interface on Human Knee Injury: Implications for Instrument Panel Design and the Lower Extremity Injury Criterion

1997-11-12
973327
Injury to the lower extremity during an automotive crash is a significant problem. While the introduction of safety features (i.e. seat belts, air bags) has significantly reduced fatalities, lower extremity injury now occurs more frequently, probably for a variety of reasons. Lower extremity trauma is currently based on a bone fracture criterion derived from human cadaver impact experiments. These impact experiments, conducted in the 1960's and 70's, typically used a rigid impact interface to deliver a blunt insult to the 90° flexed knee. The resulting criterion states that 10 kN is the maximum load allowed at the knee during an automotive crash when certifying new automobiles using anthropomorphic dummies. However, clinical studies suggest that subfracture loading can cause osteochondral microdamage which can progress to a chronic and debilitating joint disease.
Technical Paper

Patellofemoral Joint Fracture Load Prediction Using Physical and Pathological Parameters

1998-02-23
980358
Lower extremity (knee) injury prediction resulting from impact trauma is currently based on a bone fracture criterion derived from experiments on predominantly aged cadavers. Subsequent experimental and theoretical studies indicate that more aged, pathological specimens require higher, not lower, loads to initiate bone fracture. This suggests that a bone fracture criterion based solely on aged specimens may not be representative of the current driving population. In the current study, we sought to determine if cadaver age, physical size, sex, baseline joint pathology, or patellar geometry correlated with fracture load. An analysis was made of data from previous impact experiments conducted on fifteen isolated cadaver knees using a consistent impact protocol. The protocol consisted of sequentially increasing the impact energy with a rigid interface until gross fracture. Gross bone fractures occurred at loads of 6.9±2.0 kN (range 3.2 to 10.6 kN) using this protocol.
Technical Paper

High Efficient LED Headlamp Design-Styling versus Light Performance

2007-04-16
2007-01-0874
First LED headlamps will be released into the market in 2007. Special permissions allow this introduction although the official regulation is still under discussion in ECE. The LED technology for front lighting has entered into a new phase from theoretical, prototype status to real and practical applications. Additionally in Europe the legislation, which is under preparation, defines LED modules with one or more LED chips in a row which should be replaceable. With this boundary conditions headlamp suppliers needs to balance between an attractive and innovative styling, demanded by car manufacturers and the light performance to gurantee good visibility at night. The paper describes the methods how to design an LED headlamp with high efficiency by keeping in mind the parameters: packaging, weight, styling and light perfromance. Results with specific design proposals are shown.
Technical Paper

Construction and Application of Near Field (TIR Type) Lenses for Automotive Lighting Functions

2007-04-16
2007-01-1040
Light Emitting Diodes (LEDs) are fast becoming the preferred light sources for automotive lighting applications. They emit light at cone angles equal (hemispherical) or less (conical) than 2Π radians. One way for efficiently collecting and collimating light from LED light sources is to use Near Field Lenses (NFLs). NFLs are collimators using refraction and total internal reflection (TIR) to efficiently collect and direct light. They tend to have thick sections and therefore require challenging molding techniques, and they may have the LED source optically coupled directly into them. Beside these functional aspects, NFLs offer unique styling for different lighting functions such as those in rear combination lamps (RCLs), front turn signal lamps, daytime running lamps (DRLs) and headlamps.
Technical Paper

Development of Injury Criteria for Human Surrogates to Address Current Trends in Knee-to-Instrument Panel Injuries

1998-11-02
983146
Injuries to the lower extremities are common during car accidents because the lower extremity is typically the first point of contact between the occupant and the car interior. While injuries to the knee, ankle and hip are usually not life threatening, they can represent a large societal burden through treatment costs, lost work days and a reduced quality of life. The aim of the current study was to specifically study injuries associated with the knee and to propose a methodology which could be used to prevent future knee injuries. To understand the scope of this problem, a study was designed to identify injury trends in car crashes for the years 1979-1995. The NASS (National Accident Sampling System) showed that 10% of all injuries were to the knee, second only to head and neck injuries. Most knee injuries resulted from knee-to-instrument panel contact. Subfracture injuries were most common (contusions, abrasions, lacerations) followed by gross fracture injuries.
Technical Paper

Development of the HANS Head and Neck Support for Formula One

1998-11-16
983060
Extensive crash sled testing and analysis has recently led to the development of a new HANS prototypes for use in FIA F1. The performance of HANS prototypes has been studied with various conditions of HANS design geometry and impact direction. The new HANS prototypes have been found to substantially reduce injurious motions and forces of the head and neck, and the new HANS is lighter, more compact, and performs better than the currently available HANS. Use of HANS by FIA F1 drivers has been initiated.
Technical Paper

Blind Spot Monitoring by a Single Camera

2009-04-20
2009-01-1291
A practical and low cost Blind Spot Monitoring system is proposed. By using a single camera, the range and azimuth position of a vehicle in a blind spot are measured. The algorithm is based on the proposed RWA (Range Window Algorithm). The camera is installed on the door mirror and monitoring the side and rear of the host vehicle. The algorithm processes the image and identifies range and azimuth angle of the vehicle in the adjacent lane. This algorithm is applied to real situations. The 388 images including several kinds of vehicles are analyzed. The detection rate is 86% and the range accuracy is 1.6[m]. The maximum detection range is about 30[m].
Technical Paper

Multi-Target Modelling for Embedded Software Development for Automotive Applications

2004-03-08
2004-01-0269
Manual ‘porting” of source code is often required in order to “reuse” control software in different applications with different target hardware. This process is not cost effective. Maintaining multiple “versions” of the same software also causes problems. This paper describes a way in which multiple target source code can be generated from a single model. A custom data class is developed so that it can be used to define both signal and parameter data types necessary for data dictionary-driven models. This capability allows a single model to be used to generate code for multiple target hardware architectures. A software development process using a generic model to support multiple hardware targets is compared with the hand porting process (e.g. floating-point to/from fixed-point). Auto code generation from a sample multi-target feature model will be presented. The efficiency of the auto code will also be discussed.
Technical Paper

Influence of Automotive Seat and Package Factors on Posture and Applicability to Design Models

2001-06-26
2001-01-2091
In an effort to create computer models to promote rapid, cost-effective prototyping while easing design changes, more information about how people interact with seats is needed. Predicting the occupant location, their geometry, and motion within a vehicle leads to a better determination of safety restraint location, controls reach, and visibility - factors that affect the overall operation of the vehicle. Based on the Michigan State University JOHN model, which provides a biomechanical simulation of the torso posture, experiments were conducted to examine the change of postures due to seat and interior package factors. The results can be incorporated into the posture prediction model of the RAMSIS program to give a more detailed prognosis of the spine curvature and refine the model-seat interactions. This paper will address findings of the experimental study with relation to model development.
Technical Paper

Non-Linear Analysis of Tunable Compression Bushing for Stabilizer Bars

2004-03-08
2004-01-1548
Stabilizer bars in a suspension system are supported with bushings by a frame structure. To prevent the axial movement of the stabilizer bar within the bushing, several new stabilizer bar-bushing systems have been developed. The new systems introduce permanent compressive force between the bar and the bushing thereby preventing the relative movement of the bar within the bushing. This mechanical bond between the bar and the bushing can eliminate features such as grippy flats, collars etc. In addition, by controlling the compression parameters, the properties of the bushing such as bushing rates can be tuned and hence can be used to improve the ride and handling performance of the vehicle. In this paper, nonlinear CAE tools are used to evaluate one such compressively loaded bushing system. Computational difficulties associated with modeling such a system are discussed.
Technical Paper

A Discussion on Interior Compartment Doors and Latches

2004-03-08
2004-01-1483
Interior compartment doors are required by Federal Motor Vehicle Safety Standard (FMVSS) 201, to stay closed during physical head impact testing, and when subjected to specific inertia loads. This paper defines interior compartment doors, and shows examples of several different latches designed to keep these doors closed. It also explores the details of the requirements that interior compartment doors and their latches must meet, including differing requirements from automobile manufacturers. It then shows the conventional static method a supplier uses to analyze a latch and door system. And, since static calculations can't always capture the complexities of a dynamic event, this paper also presents a case study of one particular latch and door system showing a way to simulate the forces experienced by a latch. The dynamic simulation is done using Finite Element Analysis and instrumentation of actual hardware in physical tests.
Technical Paper

CAE Virtual Door Slam Test for Plastic Trim Components

2003-03-03
2003-01-1209
Visteon has developed a CAE procedure to qualify plastic door trim assemblies under the vehicle door slam Key Life Test (KLT) environments. The CAE Virtual Door Slam Test (VDST) procedure simulates the environment of a whole door structural assembly, as a hinged in-vehicle door slam configuration. It predicts the durability life of a plastic door trim sub-assembly, in terms of the number of slam cycles, based on the simulated stresses and plastic material fatigue damage model, at each critical location. The basic theory, FEA methods and techniques employed by the VDST procedure are briefly described in this paper. Door trim project examples are presented to illustrate the practical applications and their results, as well as the correlation with the physical door slam KLTs.
Technical Paper

Interior Fittings – A Global View

2003-03-03
2003-01-1175
In today's global economy, the automotive design engineer's responsibilities are made more complex by the differences between regulatory requirements of the various global markets. This paper compares instrument panel head impact requirements of FMVSS 201 with its European counterparts, ECE 21, and EEC/74/60, Interior Fittings. It describes the similarities and differences between these regulations and explains the unique requirements for each market. It then compares processes for development and validation testing in both markets. It also covers related topics like self-certification, witness testing, radii, projections, and interior compartment doors. The cockpit design engineer will gain an understanding of the factors involved in ensuring that their design fully meets the requirements of the subject regulations.
Technical Paper

Statistical Modeling of Fatigue Crack Growth in Wing Skin Fastener Holes

2012-04-16
2012-01-0482
Estimation and prediction of residual life and reliability are serious concerns in life cycle management for aging structures. Laboratory testing replicating fatigue loading for a typical military aircraft wing skin was undertaken. Specimens were tested until their fatigue life expended reached 100% of the component fatigue life. Then, scanning electron microscopy was used to quantify the size and location of fatigue cracks within the high stress regions of simulated fastener holes. Distributions for crack size, nearest neighbor distances, and spatial location were characterized statistically in order to estimate residual life and to provide input for life cycle management. Insights into crack initiation and growth are also provided.
Technical Paper

Compressor Body Temperature and Lubrication

2013-04-08
2013-01-1501
The paper addresses compressor body temperature (crankcase) importance to the vehicle AC system long-term durability. Majority of OEM vehicle test evaluation is to see if AC system can pass compressor discharge temperature and discharge pressure targets. Most OEMs adopt 130°C max compressor discharge temperature and 2350 kpag head pressure as the target. From the field, although some of the compressor failure results from a high compression ratio, and compressor discharge temperature that are caused by the poor front end airflow, etc., high percentage compressor failed systems exhibit not too high compression ratio and compressor discharge temperature, but having the trace of high temperature in the shaft area, gasket area, etc. With introducing more and more variable swash plate compressor applications, OEMs start to see more and more compressor failures that are not related to a high compressor discharge temperature but the trace of high compressor body temperature.
Technical Paper

Target Tracking by a Single Camera Based on Range-Window Algorithm and Pattern Matching

2006-04-03
2006-01-0140
An algorithm, which determines the range of a preceding vehicle by a single image, had been proposed. It uses a “Range-Window Algorithm”. Here in order to realize higher robustness and stability, the pattern matching is incorporated into the algorithm. A single camera system using this algorithm has an advantage over the high cost of stereo cameras, millimeter wave radar and non-robust mechanical scanning in some laser radars. And it also provides lateral position of the vehicle. The algorithm uses several portions of a captured image, namely windows. Each window is corresponding to a predetermined range and has the fixed physical width and height. In each window, the size and position of objects in the image are estimated through the ratio between the widths of the objects and the window, and a score is given to each object. The object having the highest score is determined as the best object. The range of the window corresponding to the best object becomes an estimated range.
Technical Paper

Simulation of Torso Posture and Motion in Seating

1998-04-28
981304
Since the 1960's, automotive seats have been designed and evaluated with tools and procedures described in the SAE Recommended Practice J826. The SAE J826 design template and testing manikin each have a torso with a flat lower back shape and with a single joint at the H-point. The JOHN models provide a more anatomically detailed representation of human shape and movement. The articulations of the JOHN torso (pelvic, lumbar, and thoracic) segments are coupled so that their relative positions are determined by a single parameter related to spinal curvature. This paper describes the development and use of the JOHN biomechanical models for seating design.
Technical Paper

Bushing Characteristics of Stabilizer Bars

2003-03-03
2003-01-0239
A stabilizer bar in a suspension system is useful for preventing excessive rolls in vehicle maneuvers like cornering. Stabilizer bars are supported with bushings by either a frame or a subframe. To prevent the axial movement of the stabilizer bar within the bushing, features like add on collars, upset rings, grippy flats etc. are used on the stabilizer bar. At Visteon Corporation, several new stabilizer bar - bushing systems are developed where such axial movement is prevented by the use of compressive force. Relative merits of different stabilizer bar - bushing systems are compared in terms of roll stiffness and maximum stress on the bar through the use of finite elements.
Technical Paper

Biomechanically Articulated Chair Concept and Prototypes

1997-02-24
970591
The human torso includes three major segments, the thoracic (rib cage) segment, lumbar segment, and pelvic segment to which the thighs are attached. The JOHN model was developed to represent the positions and movements of these torso segments along with the head, arms, and legs. Using the JOHN model, a new seat concept has been developed to support and move with the torso segments and thighs. This paper describes the background of the biomechanically articulated chair (BAC) and the development of BAC prototypes. These BAC prototypes have been designed to move with and support the thighs, pelvis, and rib cage through a wide variety of recline angles and spinal curvatures. These motions have been evaluated with computer modeling and with initial experience of human subjects. Results from computer modeling and human subjects show that the BAC will allow a broad range of torso postures.
Technical Paper

Automating Instrument Panel Head Impact Simulation

2005-04-11
2005-01-1221
Occupant head impact simulations on automotive instrument panels (IP) are routinely performed as part of an integrated design process during the course of IP development. Based on the requirements (F/CMVSS, ECE), head impact zones on the IP are first established, which are then used to determine the various “hit” locations to be tested/analyzed. Once critical impact locations are identified, CAE simulations performed which is a repetitive process that involves computing impact angles, positioning the rigid head form with an assigned initial velocity and defining suitable contacts within the finite element model. A commercially available CAE process automation tool was used to automate these steps and generate a head impact simulation model. Once the input model is checked for errors by the automated process, it can be submitted to a solver without any user intervention for analysis and report generation.
X