Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Electrospray for Fuel Injection

1997-10-01
972987
Automotive fuel injectors have been adapted with electrodes that enable negative electric charge to be inserted into the fuel flowing through the injector. Because the fuel is electrically very insulating and flowing rapidly, a significant amount of charge is retained in the fuel as it issues from the injector. Once exposed to the atmosphere, the charge laden fuel both atomizes and spatially disperses due to electrostatic forces. By varying the amount of inserted charge, the spray pattern can be varied significantly. This added variability allows the possibility of changing the fuel presentation when fuel is injected into the intake port of a typical spark ignited engine. A variable presentation may be useful for optimizing fuel evaporation within the port, with a corresponding reduction of exhaust emissions, during the cold start period of the engine when those parameters affecting evaporation are changing both temporally and spatially.
Technical Paper

Vibrational Sensor Based on Fluid Damping Mechanisms

1990-02-01
900489
A piezoelectrically driven vibrating cantilever blade is damped by a number of mechanisms including viscous damping in a still fluid and aerodynamic damping in a flow. By measuring the damping of devices operating at resonance in the 1 to 5 kHz region, one can measure such properties as mass flow, absolute pressure or the product of molecualar mass and viscosity. In the case of the mass flow measurement, the device offers a mechanical alternative to hotwire and hot film devices for the automotive application.
Technical Paper

A New Mechanism for Measuring Exhaust A/F

1993-11-01
932957
Exhaust gas air-fuel ratio (A/F) sensors are common devices in powertrain feedback control systems aimed at minimizing emissions. Both resistive (using TiO2) and electrochemical (using ZrO2) mechanisms are used in the high temperature ceramic devices now being employed. In this work a new mechanism for making the measurement is presented based on the change in the workfunction of a Pt film in interaction with the exhaust gas. In particular it is found that the workfunction of Pt increases reversibly by approximately 0.7 V at that point (the stoichiometric ratio) where the exhaust changes from rich to lean conditions. This increase arises from the adsorption of O2 on the Pt surface. On returning to rich conditions, catalytic reaction of the adsorbed oxygen with reducing species returns the workfunction to its original value. Two methods, one capacitive and one thermionic, for electrically sensing this workfunction change and thus providing for a practical device are discussed.
X