Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Modeling of Phase Change within a Wax Element Thermostat Embedded in an Automotive Cooling System

2017-03-28
2017-01-0131
In an automotive cooling circuit, the wax melting process determines the net and time history of the energy transfer between the engine and its environment. A numerical process that gives insight into the mixing process outside the wax chamber, the wax melting process inside the wax chamber, and the effect on the poppet valve displacement will be advantageous to both the engine and automotive system design. A fully three dimensional, transient, system level simulation of an inlet controlled thermostat inside an automotive cooling circuit is undertaken in this paper. A proprietary CFD algorithm, Simerics-Sys®/PumpLinx®, is used to solve this complex problem. A two-phase model is developed in PumpLinx® to simulate the wax melting process. The hysteresis effect of the wax melting process is also considered in the simulation.
Journal Article

Aerodynamic Investigation of Cooling Drag of a Production Pickup Truck Part 1: Test Results

2018-04-03
2018-01-0740
The airflow that enters the front grille of a ground vehicle for the purpose of component cooling has a significant effect on aerodynamic drag. This drag component is commonly referred to as cooling drag, which denotes the difference in drag measured between open grille and closed grille conditions. When the front grille is closed, the airflow that would have entered the front grille is redirected around the body. This airflow is commonly referred to as cooling interference airflow. Consequently, cooling interference airflow can lead to differences in vehicle component drag; this component of cooling drag is known as cooling interference drag. One mechanism that has been commonly utilized to directly influence the cooling drag, by reducing the engine airflow, is active grille shutters (AGS). For certain driving conditions, the AGS system can restrict airflow from passing through the heat exchangers, which significantly reduces cooling drag.
Journal Article

Lockheed Martin Low-Speed Wind Tunnel Acoustic Upgrade

2018-04-03
2018-01-0749
The Lockheed Martin Low-Speed Wind Tunnel (LSWT) is a closed-return wind tunnel with two solid-wall test sections. This facility originally entered into service in 1967 for aerodynamic research of aircraft in low-speed and vertical/short take-off and landing (V/STOL) flight. Since this time, the client base has evolved to include a significant level of automotive aerodynamic testing, and the needs of the automotive clientele have progressed to include acoustic testing capability. The LSWT was therefore acoustically upgraded in 2016 to reduce background noise levels and to minimize acoustic reflections within the low-speed test section (LSTS). The acoustic upgrade involved detailed analysis, design, specification, and installation of acoustically treated wall surfaces and turning vanes in the circuit as well as low self-noise acoustic wall and ceiling treatment in the solid-wall LSTS.
Journal Article

Brake System Performance at Higher Mileage

2017-09-17
2017-01-2502
The purchase of a new automobile is unquestionably a significant investment for most customers, and with this recognition, comes a correspondingly significant expectation for quality and reliability. Amongst automotive systems -when it comes to considerations of reliability - the brakes (perhaps along with the tires) occupy a rarified position of being located in a harsh environment, subjected to continuous wear throughout their use, and are critical to the safe performance of the vehicle. Maintenance of the brake system is therefore a fact of life for most drivers - something that almost everyone must do, yet given the potentially considerable expense, it is something that of great benefit to minimize.
Journal Article

Aerodynamic Investigation of Cooling Drag of a Production Sedan Part 2: CFD Results

2017-03-28
2017-01-1528
Cooling drag is a metric that measures the influence of air flow travelling through the open grille of a ground vehicle on overall vehicle drag, both internally (engine air flow) and externally (interference air flow). With the interference effects considered, a vehicles cooling drag can be influenced by various air flow fields around the vehicle, not just the air flow directly entering or leaving the engine bay. For this reason, computational fluid dynamics (CFD) simulations are particularly difficult. With insights gained from a previously conducted set of experimental studies, a CFD validation effort was undergone to understand which air flow field characteristics contribute to CFD/test discrepancies. A Lattice-Boltzmann Large Eddy Simulation (LES) method was used to validate several test points. Comparison using integral force values, surface pressures, and cooling pack air mass flows was presented.
Technical Paper

Evaluating Statistical Error in Unsteady Automotive Computational Fluid Dynamics Simulations

2020-04-14
2020-01-0692
Among the many sources of uncertainty in an unsteady computational fluid dynamics (CFD) simulation, the statistical uncertainty in the mean value of a fluctuating quantity (for example, the drag coefficient) is of practical importance for vehicle design and development. This uncertainty can be reduced by extending the simulation run length, however, this increases the computational cost and leads to longer turnaround times. Moreover, it is desirable to be able to run an unsteady CFD simulation for the minimum amount of time necessary to reach an acceptable amount of uncertainty in the quantity of interest. This work assesses several methods for calculating the uncertainty in the mean of an unsteady signal. Simulated noise is used to validate the methods, and evaluation is carried out using signals from CFD simulations of realistic vehicle geometries. Calculating the uncertainty in the difference between two signals is also discussed.
Technical Paper

Utilization of Vehicle Connectivity for Improved Energy Consumption of a Speed Harmonized Cohort of Vehicles

2020-04-14
2020-01-0587
Improving vehicle response through advanced knowledge of traffic behavior can lead to large improvements in energy consumption for the single isolated vehicle. This energy savings across multiple vehicles can even be larger if they travel together as a cohort in harmonization. Additionally, if the vehicles have enough information about their immediate path of travel, and other vehicles’ in that path (and their respective critical forward-looking information), they can safely drive close enough to each other to share aerodynamic load. These energy savings can be upwards of multiple percentage points, and are dependent on several criteria. This analysis looks at criteria that contributes to energy savings for a cohort of vehicles in synchronous motion, as well as describes a study that allows for better understanding of the potential benefits of different types of cohorted vehicles in different platoon arrangements.
Journal Article

Rapid Meshing for CFD Simulations of Vehicle Aerodynamics

2009-04-20
2009-01-0335
To-date the primary challenge in conducting aerodynamic CFD simulations of actual vehicles with realistically complex geometry has been the construction of a computational mesh. The CAD-to-Mesh processes used to-date have been laborious, often requiring many weeks of engineering time. In this paper we present a new technique to greatly expedite the CAD-to-Mesh process. The fundamentals of this technique are discussed followed by case studies that show that this technique can reduce the engineering time required for the CAD-to-Mesh process to just a few hours.
Journal Article

Cross-Section Optimization for Axial and Bending Crushes Using Dual Phase Steels

2008-04-14
2008-01-1125
To achieve optimal axial and bending crush performance using dual phase steels for components designed for crash energy absorption and/or intrusion resistance applications, the cross sections of the components need to be optimized. In this study, Altair HyperMorph™ and HyperStudy® optimization software were used in defining the shape design variables and the optimization problem setup, and non-linear finite element code LS-DYNA® software was used in crush simulations. Correlated crash simulation models were utilized and the square cross-section was selected as the baseline. The optimized cross-sections for bending and axial crush performance resulted in significant mass and cost savings, particularly with the application of dual phase steels.
Journal Article

Vehicle Integration Factors Affecting Brake Caliper Drag

2012-09-17
2012-01-1830
Disc brakes operate with very close proximity of the brake pads and the brake rotor, with as little as a tenth of a millimeter of movement of the pads required to bring them into full contact with the rotor to generate braking torque. It is usual for a disc brake to operate with some amount of residual drag in the fully released state, signifying constant contact between the pads and the rotor. With this contact, every miniscule movement of the rotor pushes against the brake pads and changes the forces between them. Sustained loads on the brake corner, and maneuvers such as cornering, can both produce rotor movement relative to the caliper, which can push it steadily against one or both of the brake pads. This can greatly increase the residual force in the caliper, and increase drag. This dependence of drag behavior on the movement of the brake rotor creates some vehicle-dependent behavior.
Technical Paper

Three-Dimensional Simulations of Automotive Catalytic Converter Internal Flow

1991-02-01
910200
The three-dimensional non-reacting flow field inside a typical dual-monolith automotive catalytic converter was simulated using finite difference analysis. The monolithic brick resistance was formulated from the pressure gradient of fully developed laminar duct-flow and corrected for the entrance effect. This correlation was found to agree with experimental pressure drop data, and was introduced as an additional source term into the non-dimensional momentum governing equation within the brick. Flow distribution within the monolith was found to depend strongly on the diffuser performance, which is a complex function of flow Reynolds number, brick resistance, and inlet pipe length and bending angles. A distribution index was formulated to quantify the degree of non-uniformity at selected test cases covering ranges of flow conditions, brick types, and inlet conditions.
Journal Article

General Motors’ New Reduced Scale Wind Tunnel Center

2017-03-28
2017-01-1534
The General Motors Reduced Scale Wind Tunnel Facility, which came into operation in the fall of 2015, is a new state-of-the-art scale model aerodynamic test facility that expands GM’s test capabilities. The new facility also increases GM’s aerodynamic testing through-put and provides the resources needed to achieve the growing demand for higher fuel economy requirements for next generation of vehicles. The wind tunnel was designed for a nominal model scale of 40%. The nozzle and test section were sized to keep wind tunnel interference effects to a minimum. Flow quality and other wind tunnel performance parameters are on par with or better than the latest industry standards. A 5-belt system with a long center belt and boundary layer suction and blowing system are used to model underbody flow conditions. An overhead probe traverse system is installed in the test section along with a model positioning robot used to move the model in an out of the test section.
Technical Paper

Optimizing 4×4 Steering Geometry

2007-01-28
2007-01-2675
This paper is related to a new concept for the steering linkage of light trucks featuring mono-beam front axles. The current configuration of steering systems for those vehicles comprise a worm and sector steering with a Pitman arm connected to a transverse drag link. This last one connects to the steering link that finally steers the left and right wheels. The problem that has been experienced with this system is that, during a braking event, results in a very unfavorable bump steering condition.
Technical Paper

Shape Optimization of IC Engine Ports and Chambers

1998-02-23
980127
Intense competition and global regulations in the automotive industry has placed unprecedented demands on the performance, efficiency, and emissions of today's IC engines. The success or failure of a new engine design to meet these often-conflicting requirements is primarily dictated by its capability to provide minimal restriction for the inducted and exhausted flow and by its capability to generate strong large-scale in-cylinder motion. The first criterion is directly linked to power performance of the engine, while the latter has been shown to control the burn rate in IC engines. Enhanced burn rates are favorable to engine efficiency and partial load performance. CFD based Numerical Simulations have recently made it possible to study the development of such engine flows in great details. However, they offer little guidance for modifying the ports and chamber geometry controlling the flow to meet the desired performance.
Technical Paper

Flow-Induced Tones in Automotive Refrigerant Systems

2007-05-15
2007-01-2294
Transient higher-frequency flow-induced tones are often perceived following air-conditioning (A/C) compressor engagements in automotive refrigerant systems, especially the ones with Thermostatic Expansion Valve (TXV) controlled systems. In this paper, the mechanisms of the acoustic tones induced by turbulent flow and shear-layer-instability in A/C lines are presented. Some of the recommended countermeasures for the attenuation and suppression of these flow-induced transient tones are also discussed.
Technical Paper

Automotive Sound Absorbing Material Survey Results

2007-05-15
2007-01-2186
Recently a sound absorption study was undertaken involving a wide range of samples of common automotive materials from ten different manufacturers. The study included 128 porous absorbers of varying thicknesses and material types (cotton blends, microfibers, etc.). This paper presents the results of that study. It was found that no single material outperformed all the others; rather, metrics such as specific air flow resistance were more important than the specific material making up the absorber. In general, samples within a certain range of thickness and specific air flow resistance showed the best performance. However, there was no single value of specific flow resistance that was optimal for all material thicknesses. Instead thinner materials required higher flow resistivity than thicker materials. In addition, because the specific air flow resistance is such an important parameter, the presence or lack of a scrim had a significant impact on absorption results.
Technical Paper

Mass Efficient Cross-Sections Using Dual Phase Steels For Axial and Bending Crushes

2007-04-16
2007-01-0978
Because of their excellent crash energy absorption capacity, dual phase (DP) steels are gradually replacing conventional High Strength Low Alloy (HSLA) steels for critical crash components in order to meet the more stringent vehicle crash safety regulations. To achieve optimal axial and bending crush performance using DP steels for crash components designed for crash energy absorption and/or intrusion resistance applications, the cross sections need to be optimized. Correlated crush simulation models were employed for the cross-section study. The models were developed using non-linear finite element code LS-DYNA and correlated to dynamic and quasi-static axial and bending crush tests on hexagonal and octagonal cross-sections made of DP590 steel. Several design concepts were proposed, the axial and bending crush performance in DP780 and DP980 were compared, and the potential mass savings were discussed.
Technical Paper

Resistance Spot Weldability of Three Metal Stack Dual Phase 600 Hot-dipped Galvanized Steel

2007-04-16
2007-01-1363
Fuel economy and federal safety regulations are driving automotive companies to use Dual Phase and other Advanced High Strength Steels (AHSS) in vehicle body structures. Joining and assembly plays a crucial role in the selection of these steels. Specifications are available for the resistance spot welding (RSW) of lower strength sheet steels, covering many aspects of the welding process from the stabilization procedure to endurance testing. Currently, specifications in the automotive industry for RSW with AHSS are limited. It is well known that welding of a thickness ratio greater than 1:2 poses a challenge. To utilize thinner gauge AHSS panels on body-in-white, welding schedules to join the thin to thick sheet steel stack-up are needed. Most of the existing published work was conducted on uncoated sheets and welded to the same thickness.
Technical Paper

Transient CFD Simulations of a Bell Sprayer

1998-09-29
982291
A methodology is developed that incorporates high resolution CFD flowfield information and a particle trajectory simulation, aimed at addressing Paint Transfer Efficiency (PTE) for bell sprayers. Given a solid model for the bell sprayer, the CFD simulation, through automeshing, determines a high resolution Cartesian volume mesh (14-20 million cells). With specified values of the initial shaping air, transient and steady-state flow field information is obtained. A particle trajectory visualization tool called SpraySIM uses this complicated flowfield information to determine the particle trajectories of the paint particles under the influence of drag, gravity and electrostatic potential. The sensitivity of PTE on shaping air velocity, charge-to-mass ratio, potential, and particle diameter are examined.
Technical Paper

A Correlation Study between the Full Scale Wind Tunnels of Chrysler, Ford, and General Motors

2008-04-14
2008-01-1205
A correlation of aerodynamic wind tunnels was initiated between Chrysler, Ford and General Motors under the umbrella of the United States Council for Automotive Research (USCAR). The wind tunnels used in this correlation were the open jet tunnel at Chrysler's Aero Acoustic Wind Tunnel (AAWT), the open jet tunnel at the Jacobs Drivability Test Facility (DTF) that Ford uses, and the closed jet tunnel at General Motors Aerodynamics Laboratory (GMAL). Initially, existing non-competitive aerodynamic data was compared to determine the feasibility of facility correlation. Once feasibility was established, a series of standardized tests with six vehicles were conducted at the three wind tunnels. The size and body styles of the six vehicles were selected to cover the spectrum of production vehicles produced by the three companies. All vehicles were tested at EPA loading conditions. Despite the significant differences between the three facilities, the correlation results were very good.
X