Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Modeling of Thermophoretic Soot Deposition and Hydrocarbon Condensation in EGR Coolers

2009-06-15
2009-01-1939
EGR coolers are effective to reduce NOx emissions from diesel engines due to lower intake charge temperature. EGR cooler fouling reduces heat transfer capacity of the cooler significantly and increases pressure drop across the cooler. Engine coolant provided at 40–90 C is used to cool EGR coolers. The presence of a cold surface in the cooler causes particulate soot deposition and hydrocarbon condensation. The experimental data also indicates that the fouling is mainly caused by soot and hydrocarbons. In this study, a 1-D model is extended to simulate particulate soot and hydrocarbon deposition on a concentric tube EGR cooler with a constant wall temperature. The soot deposition caused by thermophoresis phenomena is taken into account the model. Condensation of a wide range of hydrocarbon molecules are also modeled but the results show condensation of only heavy molecules at coolant temperature.
Journal Article

Realization of Ground Effects on Snowmobile Pass-by Noise Testing

2009-05-19
2009-01-2229
Noise concerns regarding snowmobiles have increased in the recent past. Current standards, such as SAE J192 are used as guidelines for government agencies and manufacturers to regulate noise emissions for all manufactured snowmobiles. Unfortunately, the test standards available today produce results with variability that is much higher than desired. The most significant contributor to the variation in noise measurements is the test surface. The test surfaces can either be snow or grass and affects the measurement in two very distinct ways: sound propagation from the source to the receiver and the operational behavior of the snowmobile. Data is presented for a known sound pressure speaker source and different snowmobiles on various test days and test surfaces. Relationships are shown between the behavior of the sound propagation and track interaction to the ground with the pass-by noise measurements.
Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
Journal Article

Effect of Thermal Exposure Time on the Relaxation of Residual Stress in High Pressure Die Cast AM60

2016-04-05
2016-01-0423
Magnesium alloys are becoming more commonly used for large castings with sections of varying thicknesses. During subsequent processing at elevated temperatures, residual stresses may relax and become a potential mechanism for part distortion. This study was conducted to quantify the effects of thermal exposure on residual stresses and relaxation in a high pressure die cast magnesium (AM60) alloy. The goal was to characterize relaxation of residual stresses at temperatures that are commonly experienced by body components during a typical paint bake cycle. A residual stress test sample design and quench technique developed for relaxation were used and a relaxation study was conducted at two exposure temperatures (140°C and 200°C) over a range of exposure times (0.25 to 24 hours). The results indicate that a significant amount of residual stress relaxation occurred very rapidly during exposure at both exposure temperatures.
Journal Article

Interpolated Selective Area Mechanical Roughening for Thermally Sprayed Engine Bores

2017-03-28
2017-01-0452
Thermally sprayed engine bores require surface preparation prior to coating to ensure adequate adhesion. Mechanical roughening methods produce repeatable surfaces with high adhesion strength and are attractive for high volume production. The currently available mechanical roughening methods are finish boring based processes which require diameter-specific tooling and significant clearance at the bottom of the bore for tool overtravel and retraction. This paper describes a new mechanical roughening method based on circular interpolation. This method uses two tools: a peripheral milling tool, which cuts a series of concentric grooves in the bore wall through interpolation, and a second rotary tool which deforms the grooves to produce an undercut. This method produces equivalent or higher bond strength than current surface preparation methods, and does not require diameter-specific tooling or bottom clearance for tool retraction.
Journal Article

Lubricant-Derived Ash Impact on Gasoline Particulate Filter Performance

2016-04-05
2016-01-0942
The increasing use of gasoline direct injection (GDI) engines coupled with the implementation of new particulate matter (PM) and particle number (PN) emissions regulations requires new emissions control strategies. Gasoline particulate filters (GPFs) present one approach to reduce particle emissions. Although primarily composed of combustible material which may be removed through oxidation, particle also contains incombustible components or ash. Over the service life of the filter the accumulation of ash causes an increase in exhaust backpressure, and limits the useful life of the GPF. This study utilized an accelerated aging system to generate elevated ash levels by injecting lubricant oil with the gasoline fuel into a burner system. GPFs were aged to a series of levels representing filter life up to 150,000 miles (240,000 km). The impact of ash on the filter pressure drop and on its sensitivity to soot accumulation was investigated at specific ash levels.
Journal Article

Systems Engineering Approach for Voice Recognition in the Car

2017-03-28
2017-01-1599
In this paper, a systems engineering approach is explored to evaluate the effect of design parameters that contribute to the performance of the embedded Automatic Speech Recognition (ASR) engine in a vehicle. This includes vehicle designs that influence the presence of environmental and HVAC noise, microphone placement strategy, seat position, and cabin material and geometry. Interactions can be analyzed between these factors and dominant influencers identified. Relationships can then be established between ASR engine performance and attribute performance metrics that quantify the link between the two. This helps aid proper target setting and hardware selection to meet the customer satisfaction goals for both teams.
Journal Article

The Impact of Microphone Location and Beamforming on In-Vehicle Speech Recognition

2017-03-28
2017-01-1692
This paper describes two case studies in which multiple microphone processing (beamforming) and microphone location were evaluated to determine their impact on improving embedded automatic speech recognition (ASR) in a vehicle hands-free environment. While each of these case studies was performed using slightly different evaluation set-ups, some specific and general conclusions can be drawn to help guide engineers in selecting the proper microphone location and configuration in a vehicle for the improvement of ASR. There were some outcomes that were common to both dual microphone solutions. When considering both solutions, neither was equally effective across all background noise sources. Both systems appear to be far more effective for noise conditions in which higher frequency energy is present, such as that due to high levels of wind noise and/or HVAC (heating, ventilation and air conditioning) blower noise.
Journal Article

Validation of In-Vehicle Speech Recognition Using Synthetic Mixing

2017-03-28
2017-01-1693
This paper describes a method to validate in-vehicle speech recognition by combining synthetically mixed speech and noise samples with batch speech recognition. Vehicle cabin noises are prerecorded along with the impulse response from the driver's mouth location to the cabin microphone location. These signals are combined with a catalog of speech utterances to generate a noisy speech corpus. Several factors were examined to measure their relative importance on speech recognition robustness. These include road surface and vehicle speed, climate control blower noise, and driver's seat position. A summary of the main effects from these experiments are provided with the most significant factors coming from climate control noise. Additionally, a Signal to Noise Ratio (SNR) experiment was conducted highlighting the inverse relationship with speech recognition performance.
Journal Article

Optimization of Front Wheel Drive Engine Mounting System for Third Order Shudder Improvement

2017-04-11
2017-01-9175
Nowadays, the vehicle design is highly ruled by the increasing customer demands and expectations. In addition to ride comfort and vehicle handling, the Noise, Vibration and Harshness (NVH) behavior of the powertrain is also a critical factor that has a big impact on the customer experience. To evaluate the powertrain NVH characteristics, the NVH error states should be studied. A typical NVH event could be decoupled into 3 parts: source, path, and receiver. Take-off shudder, which evaluates the NVH severity level during vehicle take-off, is one of the most important NVH error states. The main sources of Front Wheel Drive (FWD) take-off shudder are the plunging Constant Velocity Joints (CVJ) on the left and right half shafts. This is because a plunging CVJ generates a third order plunging force with half shaft Revolution Per Minute (RPM), which is along the slip of the plunging CVJ.
Journal Article

Multibody Dynamics Cosimulation for Vehicle NVH Response Predictions

2017-03-28
2017-01-1054
At various milestones during a vehicle’s development program, different CAE models are created to assess NVH error states of concern. Moreover, these CAE models may be developed in different commercial CAE software packages, each one with its own unique advantages and strengths. Fortunately, due to the wide spread acceptance that the Functional Mock-up Interface (FMI) standard gained in the CAE community over the past few years, many commercial CAE software now support cosimulation in one form or the other. Cosimulation allows performing multi-domain/multi-resolution simulations of the vehicle, thereby combining the advantages of various modeling techniques and software. In this paper, we explore cosimulation of full 3D vehicle model developed in MSC ADAMS with 1D driveline model developed in LMS AMESim. The target application of this work is investigation of vehicle NVH error states associated with both hybridized and non-hybridized powertrains.
Journal Article

CFD Driven Parametric Design of Air-Air Jet Pump for Automotive Carbon Canister Purging

2017-03-28
2017-01-1316
A jet pump (also known as ejector) uses momentum of a high velocity jet (primary flow) as a driving mechanism. The jet is created by a nozzle that converts the pressure head of the primary flow to velocity head. The high velocity primary flow exiting the nozzle creates low pressure zone that entrains fluid from a secondary inlet and transfers the total flow to desired location. For a given pressure of primary inlet flow, it is desired to entrain maximum flow from secondary inlet. Jet pumps have been used in automobiles for a variety of applications such as: filling the Fuel Delivery Module (FDM) with liquid fuel from the fuel tank, transferring liquid fuel between two halves of the saddle type fuel tank and entraining fresh coolant in the cooling circuit. Recently, jet pumps have been introduced in evaporative emission control system for turbocharged engines to remove gaseous hydrocarbons stored in carbon canister and supply it to engine intake manifold (canister purging).
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Technical Paper

Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS)

2020-04-14
2020-01-0777
The Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) is a project to develop structural commercial vehicle suspension components in high volume utilising hybrid materials and joining techniques to offer a viable lightweight production alternative to steel. Three components are in scope for the project:- Front Subframe Front Lower Control Arm (FLCA) Rear Deadbeam Axle
Journal Article

Ionization Signal Response during Combustion Knock and Comparison to Cylinder Pressure for SI Engines

2008-04-14
2008-01-0981
In-cylinder ion sensing is a subject of interest due to its application in spark-ignited (SI) engines for feedback control and diagnostics including: combustion knock detection, rate and phasing of combustion, and mis-fire On Board Diagnostics (OBD). Further advancement and application is likely to continue as the result of the availability of ignition coils with integrated ion sensing circuitry making ion sensing more versatile and cost effective. In SI engines, combustion knock is controlled through closed loop feedback from sensor metrics to maintain knock near the borderline, below engine damage and NVH thresholds. Combustion knock is one of the critical applications for ion sensing in SI engines and improvement in knock detection offers the potential for increased thermal efficiency. This work analyzes and characterizes the ionization signal in reference to the cylinder pressure signal under knocking and non-knocking conditions.
Journal Article

Rotary Fatigue Analysis of Forged Magnesium Road Wheels

2008-04-14
2008-01-0211
Fatigue analysis incorporating explicit finite element simulation was conducted on a forged magnesium wheel model where a rotating bend moment was applied to the hub to simulate rotary fatigue testing. Based on wheel fatigue design criteria and a developed fatigue post-processor, the safety factor of fatigue failure was calculated for each finite element. Fatigue failure was verified through experimental testing. Design modifications were proposed by increasing the spoke thickness. Further numerical and experimental testing indicated that the modified design passed the rotary fatigue test.
Journal Article

Diesel EGR Cooler Fouling

2008-10-06
2008-01-2475
The buildup of deposits in EGR coolers causes significant degradation in heat transfer performance, often on the order of 20-30%. Deposits also increase pressure drop across coolers and thus may degrade engine efficiency under some operating conditions. It is unlikely that EGR cooler deposits can be prevented from forming when soot and HC are present. The presence of cooled surfaces will cause thermophoretic soot deposition and condensation of HC and acids. While this can be affected by engine calibration, it probably cannot be eliminated as long as cooled EGR is required for emission control. It is generally felt that “dry fluffy” soot is less likely to cause major fouling than “heavy wet” soot. An oxidation catalyst in the EGR line can remove HC and has been shown to reduce fouling in some applications. The combination of an oxidation catalyst and a wall-flow filter largely eliminates fouling. Various EGR cooler designs affect details of deposit formation.
Journal Article

Pressure Based Sensing Approach for Front Impacts

2011-04-12
2011-01-1443
This study demonstrates the use of pressure sensing technology to predict the crash severity of frontal impacts. It presents an investigation of the pressure change in the front structural elements (bumper, crush cans, rails) during crash events. A series of subsystem tests were conducted in the laboratory that represent a typical frontal crash development series and provided empirical data to support the analysis of the concept. The pressure signal energy at different sensor mounting locations was studied and design concepts were developed for amplifying the pressure signal. In addition, a pressure signal processing methodology was developed that relies on the analysis of the air flow behavior by normalizing and integrating the pressure changes. The processed signal from the pressure sensor is combined with the restraint control module (RCM) signals to define the crash severity, discriminate between the frontal crash modes and deploy the required restraint devices.
Journal Article

Pulley Optimization for Improved Steering Pump Airborne Noise Performance

2011-05-17
2011-01-1568
This paper discusses the optimization of an automotive hydraulic steering pump pulley design for improved in-vehicle pump NVH performance. Levels of steering pump whine noise heard inside a vehicle were deemed objectionable. Vehicle and component transfer path analyses indicated that the dominant noise path for the whine noise was airborne in nature. Subsequent experimental modal analysis indicated that the steering pump pulley was a major contributor to the amount of radiated noise produced by the pump/pulley system. CAE analysis was used to further analyze the dynamic behavior of the pulley and develop an optimized design with decreased noise radiation efficiency. The results predicted with the CAE analysis were verified in-vehicle, resulting in a vehicle with acceptable steering pump whine noise performance.
Technical Paper

Three-Dimensional Simulations of Automotive Catalytic Converter Internal Flow

1991-02-01
910200
The three-dimensional non-reacting flow field inside a typical dual-monolith automotive catalytic converter was simulated using finite difference analysis. The monolithic brick resistance was formulated from the pressure gradient of fully developed laminar duct-flow and corrected for the entrance effect. This correlation was found to agree with experimental pressure drop data, and was introduced as an additional source term into the non-dimensional momentum governing equation within the brick. Flow distribution within the monolith was found to depend strongly on the diffuser performance, which is a complex function of flow Reynolds number, brick resistance, and inlet pipe length and bending angles. A distribution index was formulated to quantify the degree of non-uniformity at selected test cases covering ranges of flow conditions, brick types, and inlet conditions.
X