Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

Prediction formula of Aerodynamic Drag Reduction in Multiple-Vehicle Platooning Based on Wake Analysis and On-Road Experiments

2016-04-05
2016-01-1596
An experimental study on reducing aerodynamic drag and improving fuel economy through vehicle platooning was conducted to develop an Intelligent Transport System (ITS) with good fuel economy of the entire vehicle-based transportation society. The objectives of the present study are to achieve a simple and quick approach to estimating the aerodynamic drag reduction rates of vehicle platooning. This paper reports the prediction formula, including the conditions of various types of vehicles in multiple-vehicle platooning, based on the power law of a free turbulent axisymmetric wake and on-road experimental results. Note, the prediction formula in this study does not fully include the effect of various type of wake deficit patterns due to rear shape of vehicle and atmospheric wind. Therefore, continuous study is needed to examine the applicable limit.
Technical Paper

Utilization of Vehicle Connectivity for Improved Energy Consumption of a Speed Harmonized Cohort of Vehicles

2020-04-14
2020-01-0587
Improving vehicle response through advanced knowledge of traffic behavior can lead to large improvements in energy consumption for the single isolated vehicle. This energy savings across multiple vehicles can even be larger if they travel together as a cohort in harmonization. Additionally, if the vehicles have enough information about their immediate path of travel, and other vehicles’ in that path (and their respective critical forward-looking information), they can safely drive close enough to each other to share aerodynamic load. These energy savings can be upwards of multiple percentage points, and are dependent on several criteria. This analysis looks at criteria that contributes to energy savings for a cohort of vehicles in synchronous motion, as well as describes a study that allows for better understanding of the potential benefits of different types of cohorted vehicles in different platoon arrangements.
Technical Paper

A Data Reduction Algorithm for Automotive Multiplexing

1998-02-23
981104
Automotive multiplexing allows sharing information among various intelligent modules inside an automotive electronic system. In order to achieve an optimum functionality, the information should be exchanged among various electronic modules in real time. New features are introduced in automobiles such as Intelligent Vehicle Highway System (IVHS), intelligent transportation support system, engine immobilizers, night vision assistance system, and automated collision avoidance and notification system. The inclusion of such features increases the data traffic over the multiplexing bus. Also, these features require very high speed and expensive bus. Data reduction techniques are used to send the data over a transmission media at high speed. Using the data reduction techniques, we will be able to include new features in automobiles without the need of a high speed bus. Since the automotive environment is different, a special data reduction algorithm is mandated.
Technical Paper

The Use of Unique Time History Input Excitation in the Dynamic Characterization of Automotive Mounts

2003-05-05
2003-01-1463
The traditional method of dynamic characterization of elastomers used in industry has largely been based on sinusoidal input excitation. Discrete frequency sine wave signals at specified amplitudes are used to excite the elastomer in a step-sine sweep fashion. This paper will examine new methods of characterization using various broadband input excitations. These different inputs include continuous sine sweep (chirp), shaped random, and acquired road profile data. Use of these broadband data types is expected to provide a more accurate representation of conditions seen in the field, while helping to eliminate much of the interpolation that is inherent with the classic discrete step-sine technique. Results of the various input types are compared in this paper with those found using the classic discrete step-sine input.
Technical Paper

A Study on Combined Effects of Road Roughness, Vehicle Velocity and Sitting Occupancies on Multi-Occupant Vehicle Ride Comfort Assessment

2017-03-28
2017-01-0409
It is recognized that there is a dearth of studies that provide a comprehensive understanding of vehicle-occupant system dynamics for various road conditions, sitting occupancies and vehicle velocities. In the current work, an in-house-developed 50 degree-of-freedom (DOF) multi-occupant vehicle model is employed to obtain the vehicle and occupant biodynamic responses for various cases of vehicle velocities and road roughness. The model is solved using MATLAB scripts and library functions. Random road profiles of Classes A, B, C and D are generated based on PSDs (Power Spectral Densities) of spatial and angular frequencies given in the manual ISO 8608. A study is then performed on vehicle and occupant dynamic responses for various combinations of sitting occupancies, velocities and road profiles. The results obtained underscore the need for considering sitting occupancies in addition to velocity and road profile for assessment of ride comfort for a vehicle.
Technical Paper

Security Needs for the Future Intelligent Vehicles

2006-04-03
2006-01-1426
The need for active safety, highway guidance, telematics, traffic management, cooperative driving, driver convenience and automatic toll payment will require future intelligent vehicles to communicate with other vehicles as well as with the road-side infrastructure. However, inter-vehicle and vehicle to roadside infrastructure communications will impose some security threats against vehicles' safety and their proprietary information. To avoid collisions, a vehicle should receive messages only from other authentic vehicles. The internal buses and electronics of a vehicle must also be protected from intruders and other people with malicious intents. Otherwise, a person can inject incorrect messages into an authentic vehicle's internal communication system and then make the vehicle transmit wrong information to the other vehicles within the vicinity. Such an event may have catastrophic consequences. Thus, a detailed study of the security needs of the future vehicles is very important.
Technical Paper

Terrain Roughness Standards for Mobility and Ultra-Reliability Prediction

2003-03-03
2003-01-0218
The U.S. Army uses the root mean squared of elevation, or the RMSE standard for characterizing road/off-road roughness descriptions. This standard has often appeared in contracts as a performance requirement for the vehicle system. One important application of the standard is describing the testing environment for the vehicle. A physical test, which uses the standard, is the 30,000 mile endurance test. More recently, another metric has been used, the power spectral density (PSD) of road roughness. The international standard for road roughness is known as the International Roughness Index (IRI), and all road construction projects in the U.S. are based on this, as well as Department of Transportation analyses. This paper will analyze the different standards by comparing and contrasting the various aspects of each. Depending on the standard and metrics chosen, the simulation results will have different correlations with actual test.
Technical Paper

Equivalent Drive Cycle Analysis, Simulation, and Testing - Wayne State University's On-Road Route for EcoCAR2

2013-04-08
2013-01-0549
The Wayne State University (WSU) EcoCAR2 student team is participating in a design competition for the conversion of a 2013 Chevrolet Malibu into a plug-in hybrid. The team created a repeatable on-road test drive route using local public roads near the university that would be of similar velocity ranges contained in the EcoCAR2 4-Cycle Drive Schedule - a weighted combination of four different EPA-based drive cycles (US06 split into city and highway portions, all of the HWFET, first 505 seconds portion of UDDS). The primary purpose of the team's local on-road route was to be suitable for testing the team's added hybrid components and control strategy for minimizing petroleum consumption and tail pipe emissions. Comparison analysis of velocities was performed between seven local routes and the EcoCAR2 4-Cycle Drive Schedule. Three of the seven local routes had acceptable equivalence for velocity (R₂ ≻ 0.80) and the team selected one of them to be the on-road test drive route.
Technical Paper

Flexible Architecture for Testing Connected Vehicles in Realistic Traffic

2023-04-11
2023-01-0218
Connected vehicles have the potential to transform the way we commute and travel in a multitude of ways. Vehicles will cooperate and coordinate with each other to solve problems appropriate for the environment in which they are operating. In this paper, we focus on the development of test equipment that includes the infrastructure and vehicles to measure and record all of the information necessary to quantify the performance of cooperative driving algorithms in realistic scenarios. The system allows tests to include real vehicles on the track and virtual vehicles in a digital twin. Real and virtual vehicles interact through the road-side units and test facility network, allowing each test vehicle to receive messages from virtual vehicles as well as the infrastructure. Messages transmitted from the test vehicles are received in the digital twin, allowing the real vehicle to interact with virtual vehicles.
Technical Paper

Post-Processing Analysis of Large Channel Count Order Track Tests and Estimation of Linearly Independent Operating Shapes

1999-05-17
1999-01-1827
Large channel count data acquisition systems have seen increasing use in the acquisition and analysis of rotating machinery, these systems have the ability to generate very large amounts of data for analysis. The most common operating measurement made on powertrains or automobiles on the road or on dynamometers has become the order track measurement. Order tracking analysis can generate a very large amount of information that must be analyzed, both due to the number of channels and orders tracked. Analysis methods to efficiently analyze large numbers of Frequency Response Function (FRF) measurements have been developed and used over the last 20 years in many troubleshooting applications. This paper develops applications for several FRF based analysis methods as applied for efficient analysis of large amounts of order track data.
Technical Paper

Route-Optimized Energy Management of Connected and Automated Multi-Mode Plug-In Hybrid Electric Vehicle Using Dynamic Programming

2019-04-02
2019-01-1209
This paper presents a methodology to optimize the blending of charge-depleting (CD) and charge-sustaining (CS) modes in a multi-mode plug-in hybrid electric vehicle (PHEV) that reduces overall energy consumption when the selected route cannot be completely driven in all-electric mode. The PHEV used in this investigation is the second-generation Chevrolet Volt and as many as four instrumented vehicles were utilized simultaneously on road to acquire validation data. The optimization method used is dynamic programming (DP) paired with a reduced-order powertrain model to enable onboard embedded controller compatibility and computational efficiency in optimally blending CD, CS modes over the entire drive route.
Technical Paper

Animal-Vehicle Encounter Naturalistic Driving Data Collection and Photogrammetric Analysis

2016-04-05
2016-01-0124
Animal-vehicle collision (AVC) is a significant safety issue on American roads. Each year approximately 1.5 million AVCs occur in the U.S., the majority of them involving deer. The increasing use of cameras and radar on vehicles provides opportunities for prevention or mitigation of AVCs, particularly those involving deer or other large animals. Developers of such AVC avoidance/mitigation systems require information on the behavior of encountered animals, setting characteristics, and driver response in order to design effective countermeasures. As part of a larger study, naturalistic driving data were collected in high AVC incidence areas using 48 participant-owned vehicles equipped with data acquisition systems (DAS). Continuous driving data including forward video, location information, and vehicle kinematics were recorded. The respective 11TB dataset contains 35k trips covering 360K driving miles.
Technical Paper

New Paradigm in Robust Infrastructure Scalability for Autonomous Applications

2019-04-02
2019-01-0495
Artificial Intelligence (A.I.) and Big Data are increasing become more applicable in the development of technology from machine design and mobility to bio-printing and drug discovery. The ability to quantify large amounts of data these systems generate will be paramount to establishing a robust infrastructure for interdisciplinary autonomous applications. This paper purposes an integrated approach to the environment, pre/post data processing, integration, and system security for robust systems in intelligent transportation systems. The systems integration is based on a FPGA embedded system design and computing (EDGE) platform utilizing image processing CNN algorithms from High Energy Physics (HEP) experiments in data centers with associative memory to ROS- FPGA technology in vehicles for hyper-scale infrastructure scalability. The ability to process data in the future is equivalent to collision particle detection that the Large Hadron Collider (LHC) produces at CERN.
Journal Article

The Dimensional Model of Driver Demand: Visual-Manual Tasks

2016-04-05
2016-01-1423
Many metrics have been used in an attempt to predict the effects of secondary tasks on driving behavior. Such metrics often give rise to seemingly paradoxical results, with one metric suggesting increased demand and another metric suggesting decreased demand for the same task. For example, for some tasks, drivers maintain their lane well yet detect events relatively poorly. For other tasks, drivers maintain their lane relatively poorly yet detect events relatively well. These seeming paradoxes are not time-accuracy trade-offs or experimental artifacts, because for other tasks, drivers do both well. The paradoxes are resolved if driver demand is modeled in two orthogonal dimensions rather than a single “driver workload” dimension. Principal components analysis (PCA) was applied to the published data from four simulator, track, and open road studies of visual-manual secondary task effects on driving.
Technical Paper

Energy Savings Impact of Eco-Driving Control Based on Powertrain Characteristics in Connected and Automated Vehicles: On-Track Demonstrations

2024-04-09
2024-01-2606
This research investigates the energy savings achieved through eco-driving controls in connected and automated vehicles (CAVs), with a specific focus on the influence of powertrain characteristics. Eco-driving strategies have emerged as a promising approach to enhance efficiency and reduce environmental impact in CAVs. However, uncertainty remains about how the optimal strategy developed for a specific CAV applies to CAVs with different powertrain technologies, particularly concerning energy aspects. To address this gap, on-track demonstrations were conducted using a Chrysler Pacifica CAV equipped with an internal combustion engine (ICE), advanced sensors, and vehicle-to-infrastructure (V2I) communication systems, compared with another CAV, a previously studied Chevrolet Bolt electric vehicle (EV) equipped with an electric motor and battery.
Technical Paper

Deliver Signal Phase and Timing (SPAT) for Energy Optimization of Vehicle Cohort Via Cloud-Computing and LTE Communications

2023-04-11
2023-01-0717
Predictive Signal Phase and Timing (SPAT) message set is one fundamental building block for vehicle-to-infrastructure (V2I) applications such as Eco-Approach and Departure (EAD) at traffic signal controlled urban intersections. Among the two complementary communication methods namely short-range sidelink (PC5) and long-range cellular radio link (Uu), this paper documents the work with long-range link: the complete data chain includes connecting to the traffic signals via existing backhaul communication network, collecting the raw signal phase state data, predicting the signal state changes and delivering the SPAT data via a geofenced service to requests over HTTP protocols. An Application Programming Interface (API) library is developed to support various cellular data transmission reduction and latency improvement techniques.
X