Refine Your Search

Topic

Author

Search Results

Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode. Presenter Seung-il Moon
Journal Article

Reduction of Steady-State CFD HVAC Simulations into a Fully Transient Lumped Parameter Network

2014-05-10
2014-01-9121
Since transient vehicle HVAC computational fluids (CFD) simulations take too long to solve in a production environment, the goal of this project is to automatically create a lumped-parameter flow network from a steady-state CFD that solves nearly instantaneously. The data mining algorithm k-means is implemented to automatically discover flow features and form the network (a reduced order model). The lumped-parameter network is implemented in the commercial thermal solver MuSES to then run as a fully transient simulation. Using this network a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track localized temperatures near specific objects (such as equipment in vehicles).
Technical Paper

Probing Spark Discharge Behavior in High-speed Cross-flows through Modeling and Experimentation

2020-04-14
2020-01-1120
This paper presents a combined numerical and experimental investigation of the characteristics of spark discharge in a spark-ignition engine. The main objective of this work is to gain insights into the spark discharge process and early flame kernel development. Experiments were conducted in an inert medium within an optically accessible constant-volume combustion vessel. The cross-flow motion in the vessel was generated using a previously developed shrouded fan. Numerical modeling was based on an existing discharge model in the literature developed by Kim and Anderson. However, this model is applicable to a limited range of gas pressures and flow fields. Therefore, the original model was evaluated and improved to predict the behavior of spark discharge at pressurized conditions up to 45 bar and high-speed cross-flows up to 32 m/s. To accomplish this goal, a parametric study on the spark channel resistance was conducted.
Journal Article

An Efficient Level-Set Flame Propagation Model for Hybrid Unstructured Grids Using the G-Equation

2016-04-05
2016-01-0582
Computational fluid dynamics of gas-fueled large-bore spark ignition engines with pre-chamber ignition can speed up the design process of these engines provided that 1) the reliability of the results is not affected by poor meshing and 2) the time cost of the meshing process does not negatively compensate for the advantages of running a computer simulation. In this work a flame propagation model that runs with arbitrary hybrid meshes was developed and coupled with the KIVA4-MHI CFD solver, in order to address these aims. The solver follows the G-Equation level-set method for turbulent flame propagation by Tan and Reitz, and employs improved numerics to handle meshes featuring different cell types such as hexahedra, tetrahedra, square pyramids and triangular prisms. Detailed reaction kinetics from the SpeedCHEM solver are used to compute the non-equilibrium composition evolution downstream and upstream of the flame surface, where chemical equilibrium is instead assumed.
Technical Paper

Alleviating the Magnetic Effects on Magnetometers Using Vehicle Kinematics for Yaw Estimation for Autonomous Ground Vehicles

2020-04-14
2020-01-1025
Autonomous vehicle operation is dependent upon accurate position estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro, 3-axis accelerometer, and 3-axis magnetometer. The IMU provides vehicle orientation in 3D space in terms of yaw, roll and pitch. Out of which, yaw is a major parameter to control the ground vehicle’s lateral position during navigation. The accelerometer is responsible for attitude (roll-pitch) estimates and magnetometer is responsible for yaw estimates. However, the magnetometer is prone to environmental magnetic disturbances which induce errors in the measurement.
Technical Paper

Characterizing the Effect of Automotive Torque Converter Design Parameters on the Onset of Cavitation at Stall

2007-05-15
2007-01-2231
This paper details a study of the effects of multiple torque converter design and operating point parameters on the resistance of the converter to cavitation during vehicle launch. The onset of cavitation is determined by an identifiable change in the noise radiating from the converter during operation, when the collapse of cavitation bubbles becomes detectable by nearfield acoustical measurement instrumentation. An automated torque converter dynamometer test cell was developed to perform these studies, and special converter test fixturing is utilized to isolate the test unit from outside disturbances. A standard speed sweep test schedule is utilized, and an analytical technique for identifying the onset of cavitation from acoustical measurement is derived. Effects of torque converter diameter, torus dimensions, and pump and stator blade designs are determined.
Technical Paper

Development and Validation of an Acoustic Encapsulation to Reduce Diesel Engine Noise

2007-05-15
2007-01-2375
This paper describes a study to demonstrate the feasibility of developing an acoustic encapsulation to reduce airborne noise from a commercial diesel engine. First, the various sources of noise from the engine were identified using Nearfield Acoustical Holography (NAH). Detailed NAH measurements were conducted on the four sides of the engine in an engine test cell. The main sources of noise from the engine were ranked and identified within the frequency ranges of interest. Experimental modal analysis was conducted on the oil pan and front cover plate of the engine to reveal correlations of structural vibration results with the data from the NAH. The second phase of the study involved the design and fabrication of the acoustical encapsulation (noise covers) for the engine in a test cell to satisfy the requirements of space, cost and performance constraints. The acoustical materials for the enclosure were selected to meet the frequency and temperature ranges of interest.
Technical Paper

Machinability of As-Compacted P/M Parts: Effect of Material Chemistry

1998-02-23
980635
Since the advent of P/M technology as a near net shape production process, millions of mechanical components of various shapes and sizes have been produced. Although P/M continues to be one of the fast growing shaping processes, it suffers from the inability to produce intricate geometry's such as internal tapers, threads or recesses perpendicular to pressing direction. In such cases application of machining as a secondary forming operation becomes the preferred alternative. However, machining of P/M parts due to their inherent porosity is known to decrease tool life and increase tool chatter and vibration. Consequently, several attempts have been made to improve the machinability of P/M materials by either addition of machinability enhancing elements such as sulfur, calcium, tellurium, selenium, etc., or by resin impregnation of P/M parts.
Technical Paper

Convergence of Laboratory Simulation Test Systems

1998-02-23
981018
Laboratory Simulation Testing is widely accepted as an effective tool for validation of automotive designs. In a simulation test, response data are measured whilst a vehicle is in service or tested at a proving ground. These responses are reproduced in the laboratory by mounting the vehicle or a subassembly of the vehicle in a test rig and applying force and displacements by servo hydraulic actuators. The data required as an input to the servo hydraulics, the drive files, are determined by an iterative procedure which overcomes the non linearity in the test specimen and the test rig system. Under certain circumstances, the iteration does not converge, converges too slowly or converges and then diverges. This paper uses mathematical and computer models in a study of the reasons why systems fail to convergence and makes recommendations about the management of the simulation test.
Technical Paper

Global Optimization of a Two-Pulse Fuel Injection Strategy for a Diesel Engine Using Interpolation and a Gradient-Based Method

2007-04-16
2007-01-0248
A global optimization method has been developed for an engine simulation code and utilized in the search of optimal fuel injection strategies. This method uses a Lagrange interpolation function which interpolates engine output data generated at the vertices and the intermediate points of the input parameters. This interpolation function is then used to find a global minimum over the entire parameter set, which in turn becomes the starting point of a CFD-based optimization. The CFD optimization is based on a steepest descent method with an adaptive cost function, where the line searches are performed with a fast-converging backtracking algorithm. The adaptive cost function is based on the penalty method, where the penalty coefficient is increased after every line search. The parameter space is normalized and, thus, the optimization occurs over the unit cube in higher-dimensional space.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

Preparation and Characterization of Nanophase Gold Catalysts for Emissions Control

2008-10-07
2008-01-2639
Various gold catalysts were prepared using commercial and in-house fabricated advanced catalyst supports that included mesoporous silica, mesoporous alumina, sol-gel alumina, and transition metal oxides. Gold nanoparticles were loaded on the supports by co-precipitation, deposition-precipitation, ion exchange and surface functionalization techniques. The average gold particle size was ∼20nm or less. The oxidation activity of the prepared catalysts was studied using carbon monoxide and light hydrocarbons (ethylene, propylene and propane) in presence of water and CO2 and the results are presented.
Technical Paper

Linkage and Structural Optimization of an Earth Moving Machine

2010-04-12
2010-01-0496
Faced with competitive environments, pressure to lower development costs and aggressive timelines engineers are not only increasingly adopting numerical simulation techniques but are also embracing design optimization schemes to augment their efforts. These techniques not only provide more understanding of the trade-offs but are also capable of proactively guiding the decision making process. However, design optimization and exploration tools have struggled to find complete acceptance and are typically underutilized in many applications; especially in situations where the algorithms have to compete with existing swift decision making processes. In this paper we demonstrate how the type of setup and algorithmic choice can have an influence and make optimization more lucrative in a new product development atmosphere. We also present some results from a design exploration activity, involving linkage and structural development, of an earth moving machine application.
Technical Paper

Powersplit Hybrid Electric Vehicle Control with Electronic Throttle Control (ETC)

2003-10-27
2003-01-3280
This paper analyzes the control of the series-parallel powersplit used in the 2001 Michigan Tech FutureTruck. An electronic throttle controller is implemented and a new control algorithm is proposed and tested. A vehicle simulation has been created in MATLAB and the control algorithm implemented within the simulation. A program written in C has also been created that implements the control algorithm in the test vehicle. The results from both the simulation and test vehicle are presented and discussed and show a 15% increase in fuel economy. With the increase in fuel economy, and through the use of the original exhaust after treatment, lower emissions are also expected.
Technical Paper

Induction Hardening Simulation of Steel and Cast Iron Components

2002-03-19
2002-01-1557
The induction hardening process involves a complex interaction of electromagnetic heating, rapid cooling, metallurgical phase transformations, and mechanical behavior. Many factors including induction coil design, power, frequency, scanning velocity, workpiece geometry, material chemistry, and quench severity determine a process outcome. This paper demonstrates an effective application of a numerical analysis tool for understanding of induction hardening. First, an overview of the Caterpillar induction simulation tool is briefly discussed. Then, several important features of the model development are examined. Finally, two examples illustrating the use of the computer simulation tool for solving induction-hardening problems related to cracking and distortion are presented. These examples demonstrate the tool's ability to simulate changes in process parameters and latitude of modeling steel or cast iron.
Technical Paper

Modeling of Human Response From Vehicle Performance Characteristics Using Artificial Neural Networks

2002-05-07
2002-01-1570
This study investigates a methodology in which the general public's subjective interpretation of vehicle handling and performance can be predicted. Several vehicle handling measurements were acquired, and associated metrics calculated, in a controlled setting. Human evaluators were then asked to drive and evaluate each vehicle in a winter driving school setting. Using the acquired data, multiple linear regression and artificial neural network (ANN) techniques were used to create and refine mathematical models of human subjective responses. It is shown that artificial neural networks, which have been trained with the sets of objective and subjective data, are both more accurate and more robust than multiple linear regression models created from the same data.
Technical Paper

Modeling and Numerical Simulation of Diesel Particulate Trap Performance During Loading and Regeneration

2002-03-04
2002-01-1019
A 2-dimensional numerical model (MTU-FILTER) for a single channel of a honeycomb ceramic diesel particulate trap has been developed. The mathematical modeling of the filtration, flow, heat transfer and regeneration behavior of the particulate trap is described. Numerical results for the pressure drop and particulate mass were compared with existing experimental results. Parametric studies of the diesel particulate trap were carried out. The effects of trap size and inlet temperature on the trap performance are studied using the trap model. An approximate 2-dimensional analytical solution to the simplified Navier-Stokes equations was used to calculate the velocity field of the exhaust flow in the inlet and outlet channels. Assuming a similarity velocity profile in the channels, the 2-dimensional Navier-Stokes equations are approximated by 1-dimenisonal conservation equations, which is similar to those first developed by Bissett.
Technical Paper

Caterpillar’s Autonomous Journey - The Argument for Autonomy

2016-09-27
2016-01-8005
Today’s business climate and economy demand new, innovative strategies from the initial kickoff of research and development - to the mining of ore from the earth - to the final inspection of a finished product in a mid-western factory. From startup companies with two employees to the largest companies, the world faces new and challenging requirements every day. The demands from companies, customers, executives, and shareholders continue to drive for higher outputs with more efficient use of personnel and investments. Fortunately, the rate of technology continues to exponentially accelerate, which allows those at the cutting edge of technology to capitalize. Caterpillar has been a pioneer in advanced technology since its inception and has been developing the foundation for autonomy over the past four decades.
Technical Paper

Easily Verifiable Adaptive Sliding Mode Controller Design with Application to Automotive Engines

2016-04-05
2016-01-0629
Verification and validation (V&V) are essential stages in the design cycle of industrial controllers to remove the gap between the designed and implemented controller. In this study, a model-based adaptive methodology is proposed to enable easily verifiable controller design based on the formulation of a sliding mode controller (SMC). The proposed adaptive SMC improves the controller robustness against major implementation imprecisions including sampling and quantization. The application of the proposed technique is demonstrated on the engine cold start emission control problem in a mid-size passenger car. The cold start controller is first designed in a single-input single-output (SISO) structure with three separate sliding surfaces, and then is redesigned based on a multiinput multi-output (MIMO) SMC design technique using nonlinear balanced realization.
Technical Paper

Real-Time Closed-Loop Control of a Light-Duty RCCI Engine During Transient Operations

2017-03-28
2017-01-0767
Real-time control of Reactivity Controlled Compression Ignition (RCCI) during engine load and speed transient operation is challenging, since RCCI combustion phasing depends on nonlinear thermo-kinetic reactions that are controlled by dual-fuel reactivity gradients. This paper discusses the design and implementation of a real-time closed-loop combustion controller to maintain optimum combustion phasing during RCCI transient operations. New algorithms for real-time in-cylinder pressure analysis and combustion phasing calculations are developed and embedded on a Field Programmable Gate Array (FPGA) to compute RCCI combustion and performance metrics on cycle-by-cycle basis. This cycle-by-cycle data is then used as a feedback to the combustion controller, which is implemented on a real-time processor. A computationally efficient algorithm is introduced for detecting Start of Combustion (SOC) for the High Temperature Heat Release (HTHR) or main-stage heat release.
X