Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Technical Paper

Impinged Diesel Spray Combustion Evaluation for Indirect Air-Fuel Mixing Processes and Its Comparison with Non-Vaporing Impinging Spray Under Diesel Engine Conditions

2019-04-02
2019-01-0267
Under low-temperature combustion for the high fuel efficiency and low emissions achievement, the fuel impingement often occurs in diesel engines with direct injection especially for a short distance between the injector and piston head/cylinder wall. Spray impingement plays an important role in the mixing-controlled combustion phase since it affects the air-fuel mixing rate through the disrupted event by the impingement. However, the degree of air entrainment into the spray is hard to be directly evaluated. Since the high spray expansion rate could allow more opportunity for fuel to mix with air, in this study, the expansion rate of impinged flame is quantified and compared with the spray expansion rate under non-vaporizing conditions. The experiments were conducted in a constant volume combustion chamber with an ambient density of 22.8 kg/m3 and the injection pressure of 150 MPa.
X