Refine Your Search

Topic

Author

Affiliation

Search Results

Journal Article

Diesel Cold-Start Emission Control Research for 2015-2025 LEV III Emissions - Part 2

2014-04-01
2014-01-1552
The diesel engine can be an effective solution to meet future greenhouse gas and fuel economy standards, especially for larger segment vehicles. However, a key challenge facing the diesel is the upcoming LEV III and Tier 3 emission standards which will require significant reductions in hydrocarbon (HC) and oxides of nitrogen (NOx) emissions. The challenge stems from the fact that diesel exhaust temperatures are much lower than gasoline engines, so the time required to achieve effective emissions control after a cold-start with typical aftertreatment devices is considerably longer. To address this challenge, a novel diesel cold-start emission control strategy was investigated on a 2L class diesel engine. This strategy combines several technologies to reduce tailpipe HC and NOx emissions before the start of the second hill of the FTP75. The technologies include both engine tuning and aftertreatment changes.
Technical Paper

Combination of Mixed Metal Oxides with Cu-Zeolite for Enhanced Soot Oxidation on an SCRoF

2021-09-05
2021-24-0071
A push for more stringent emissions regulations has resulted in larger, increasingly complex aftertreatment solutions. In particular, oxides of nitrogen (NOX) and particulate matter (PM) have been controlled using two separate systems, selective catalytic reduction (SCR) and the catalyze diesel particulate filter (CDPF), or the functionality has been combined into a single device producing the SCR on filter (SCRoF). The SCRoF forgoes beneficial NO2 production present in the CDPF to avoid NH3 oxidation which occurs when using platinum group metals (PGM) for oxidation. In this study, mixed-metal oxides are shown to oxidize NO to NO2 without appreciable NH3 oxidation. This selectivity leads to enhanced performance when combined with a typical Cu-zeolite catalyst.
Journal Article

Review of Vehicular Emissions Trends

2015-04-14
2015-01-0993
This review paper summarizes major developments in vehicular emissions regulations and technologies from 2014. The paper starts with the key regulatory advancements in the field, including newly proposed Non-Road Mobile Machinery regulations for 2019-20 in Europe, and the continuing developments towards real driving emissions (RDE) standards. An expert panel in India proposed a roadmap through 2025 for clean fuels and tailpipe regulations. LD (light duty) and HD (heavy-duty) engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging NOx and GHG regulations. HD engines are demonstrating more than 50% brake thermal efficiency using methods that can reasonably be commercialized. Next, NOx control technologies are summarized, including SCR (selective catalytic reduction), lean NOx traps, and combination systems. Emphasis is on durability and control.
Journal Article

Vehicular Emissions in Review

2016-04-05
2016-01-0919
This review paper summarizes major and representative developments in vehicular emissions regulations and technologies from 2015. The paper starts with the key regulatory advancements in the field, including newly proposed Euro 6 type regulations for Beijing, China, and India in the 2017-20 timeframe. Europe is continuing developments towards real driving emissions (RDE) standards with the conformity factors for light-duty diesel NOx ramping down to 1.5X by 2021. The California heavy duty (HD) low-NOx regulation is advancing and may be proposed in 2017/18 for implementation in 2023+. LD (light duty) and HD engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging criteria and greenhouse gas regulations. LD gasoline concepts are achieving 45% BTE (brake thermal efficiency or net amount of fuel energy gong to the crankshaft) and closing the gap with diesel.
Journal Article

Achieving Ultra Low NOX Emissions Levels with a 2017 Heavy-Duty On-Highway TC Diesel Engine and an Advanced Technology Emissions System - Thermal Management Strategies

2017-03-28
2017-01-0954
The most recent 2010 emissions standards for heavy-duty engines have established a tailpipe limit of oxides of nitrogen (NOX) emissions of 0.20 g/bhp-hr. However, it is projected that even when the entire on-road fleet of heavy-duty vehicles operating in California is compliant with 2010 emission standards, the National Ambient Air Quality Standards (NAAQS) requirement for ambient particulate matter and Ozone will not be achieved without further reduction in NOX emissions. The California Air Resources Board (CARB) funded a research program to explore the feasibility of achieving 0.02 g/bhp-hr NOX emissions.
Technical Paper

Improving Heavy Duty Natural Gas Engine Efficiency: A Systematic Approach to Application of Dedicated EGR

2020-04-14
2020-01-0818
The worldwide trend of tightening CO2 emissions standards and desire for near zero emissions is driving development of high efficiency natural gas engines for a low CO2 replacement of traditional diesel engines. A Cummins Westport ISX12 G was previously converted to a Dedicated EGR® (D-EGR®) configuration with two out of the six cylinders acting as the EGR producing cylinders. Using a systems approach, the combustion and turbocharging systems were optimized for improved efficiency while maintaining the potential for achieving 0.02 g/bhp-hr NOX standards. A prototype variable nozzle turbocharger was selected to maintain the stock torque curve. The EGR delivery method enabled a reduction in pre-turbine pressure as the turbine was not required to be undersized to drive EGR. A high energy Dual Coil Offset (DCO®) ignition system was utilized to maintain stable combustion with increased EGR rates.
Journal Article

Vehicular Emissions in Review

2012-04-16
2012-01-0368
This review paper summarizes major developments in vehicular emissions regulations and technologies (light-duty, heavy-duty, gasoline, diesel) in 2011. First, the paper covers the key regulatory developments in the field, including proposed criteria pollutant tightening in California; and in Europe, the newly proposed PN (particle number) regulation for direct injection gasoline engines, test cycle development, and in-use testing discussions. The proposed US LD (light-duty) greenhouse gas (GHG) regulation for 2017-25 is reviewed, as well as the finalized, first-ever, US HD (heavy-duty) GHG rule for 2014-17. The paper then gives a brief, high-level overview of key emissions developments in LD and HD engine technology, covering both gasoline and diesel. Emissions challenges include lean NOx remediation for diesel and lean-burn gasoline to meet both the emerging NOx and GHG regulations.
Journal Article

Diesel Cold-Start Emission Control Research for 2015-2025 LEV III Emissions

2013-04-08
2013-01-1301
The diesel engine can be an effective solution to meet future greenhouse gas and fuel economy standards, especially for larger segment vehicles. However, a key challenge facing the diesel is the upcoming LEV III emissions standard which will require significant reductions of hydrocarbon (HC) and oxides of nitrogen (NOx) from current levels. The challenge stems from the fact that diesel exhaust temperatures are much lower than gasoline engines so the time required to achieve effective emissions control with current aftertreatment devices is considerably longer. The objective of this study was to determine the potential of a novel diesel cold-start emissions control strategy for achieving LEV III emissions. The strategy combines several technologies to reduce HC and NOx emissions before the start of the second hill of the FTP75.
Journal Article

Review of Vehicle Engine Efficiency and Emissions

2018-04-03
2018-01-0329
This review article summarizes major and representative developments in vehicle emissions regulations, engine efficiency, and emission control from 2017. The article starts with the key regulatory developments in the field, including newly proposed European light-duty (LD) CO2 regulations (15 and 30% cuts in 2025 and 2030, respectively, from 2020 levels) and technical improvements of the Euro 6 real driving emissions (RDE) regulations. China finalized their new energy vehicle (NEV) mandates for 2019 and 2020. LD and heavy-duty (HD) engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging criteria and greenhouse gas (GHG) regulations. Several LD gasoline concepts are achieving 10-15% and some up to 35% reductions relative to gasoline direct injection (GDI) engines of today.
Technical Paper

Fatigue and Performance Data for Advanced Thin Wall Ceramic Catalysts

1998-02-23
980670
With stricter emissions standards, low back pressure requirements, and 100,000 mile durability specifications, ceramic catalysts have undergone significant developments over the past few years. The thrust in the ceramics area has centered on thin-wall structures to minimize back pressure and on high cell density for rapid light-off in close-coupled applications. The thin-wall structures are extruded from low expansion cordierite ceramic with adequate strength and thermal shock resistance equivalent to those of standard cordierite substrate. Examples of thin-wall substrate include 350XT which is extruded from a very low expansion dense cordierite ceramic, and 400/4 and 600/4 cell structures extruded from a low expansion modified cordierite ceramic. This paper will focus on the high fatigue resistance, excellent conversion efficiency, and low back pressure of 350 XT substrates with advanced washcoat system.
Technical Paper

Development and Testing of Optimized Engine Oils for Modern Two-Stroke Cycle Direct Fuel Injected Outboard Engines

2006-11-13
2006-32-0018
Despite the recent increase in fuel prices, the multi-billion dollar recreational boating market in North America continues to experience solid momentum and growth. In the U.S. economy alone, sales of recreational boats continue to increase with over 17 million boats sold in 2004 [1]. Of that share, outboard boats and the engines that power them, accounted for nearly half of all boat sales. Though there has been a shift in outboard technology to four-stroke cycle engines, a significant number of new engine sales represent two-stroke cycle engines employing direct fuel injection as a means to meet emissions regulations. With the life span of modern outboards estimated to be 8 to 10 years, a significant base of two-stroke cycle engines exist in the market place, and will continue to do so for the foreseeable future.
Technical Paper

Accelerometer Based Sensing of Combustion in a High Speed HPCR Diesel Engine

2007-04-16
2007-01-0972
The capability to detect combustion in a diesel engine has the potential of being an important control feature to meet increasingly stringent emission regulations and for the development of alternative combustion strategies such as HCCI and PCCI. In this work, block mounted accelerometers are investigated as potential feedback sensors for detecting combustion characteristics in a high-speed, high pressure common rail (HPCR), 1.9L diesel engine. Accelerometers are positioned in multiple placements and orientations on the engine, and engine testing is conducted under motored, single and pilot-main injection conditions. Engine tests are then conducted at varying injection timings to observe the resulting time and frequency domain changes of both the pressure and acceleration signals.
Technical Paper

The Potential for Achieving Low Hydrocarbon and NOx Exhaust Emissions from Large Light-Duty Gasoline Vehicles

2007-04-16
2007-01-1261
Two large, heavy light-duty gasoline vehicles (2004 model year Ford F-150 with a 5.4 liter V8 and GMC Yukon Denali with a 6.0 liter V8) were baselined for emission performance over the FTP driving cycle in their stock configurations. Advanced emission systems were designed for both vehicles employing advanced three-way catalysts, high cell density ceramic substrates, and advanced exhaust system components. These advanced emission systems were integrated on the test vehicles and characterized for low mileage emission performance on the FTP cycle using the vehicle's stock engine calibration and, in the case of the Denali, after modifying the vehicle's stock engine calibration for improved cold-start and hot-start emission performance.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

A Novel Approach for Diesel NOX/PM Reduction

2010-04-12
2010-01-0308
The US EPA emission standards for 2010 on-highway and 2014 non-road diesel engines are extremely stringent, both in terms of oxides of nitrogen (NOX) and particulate matter (PM). Diesel engines typically operate lean and use at least 40-50 percent more air than what is needed for stoichiometric combustion of the fuel. As a result, significant excess oxygen (O₂) is present in diesel exhaust gas which prevents the application of the mature three-way catalyst (TWC) technology for NOX control used in gasoline engines. The objective of this work was to investigate whether or not the catalyzed DPF had a TWC-type of effect on NOX emissions and if so, why and to what extent when used on a diesel engine operating at reduced A/F ratio conditions.
Technical Paper

Simultaneous Reduction of PM, HC, CO and NOx Emissions from a GDI Engine

2010-04-12
2010-01-0365
Particulate Matter (PM) emissions from gasoline direct injection (GDI) engines are becoming a concern and will be limited by future emissions regulations, such as the upcoming Euro 6 legislation. Therefore, PM control from a GDI engine will be required in addition to effective reduction of HC, CO and NOx emissions. Three different integrated aftertreatment systems were developed to simultaneously reduce PM, HC, CO and NOx emissions from a preproduction Ford 3.5L EcoBoost GTDI engine, with PM reduction as the major focus. PM reduction efficiencies were calculated based on the measurements of PM mass and solid particle number. Test results show that tradeoffs exist in the design of aftertreatment systems to significantly reduce PM emissions from a GDI engine.
Technical Paper

A Review of Diesel Particulate Filter Technologies

2003-06-23
2003-01-2303
Diesel particulate filters (DPF), known as traps in the mid-to late 1970s, were being developed for on-highway diesel applications. However, advanced engine design and in-cylinder engineering enabled diesel engines and vehicles to meet extremely low emission limits, including those of particulate matter (PM) without the need for DPF's or other auxiliary emission control devices. Late in 2000, the US EPA finalized its on-highway heavy-duty diesel emission standards, thus ending speculations regarding its stringency and establishing the lowest limits ever. The new nitric oxides (NOX) and PM limits are seen as technology-forcing. For NOX emissions, the debate rages on among the technical community about the merits of NOX adsorbers and urea selective catalytic reduction. On the other hand, there seems to be little doubt about DPF's as the technical solution for PM.
Technical Paper

Achieving Tier 2 Bin 5 Emission Levels with a Medium Duty Diesel Pick-Up and a NOX Adsorber, Diesel Particulate Filter Emissions System-Exhaust Gas Temperature Management

2004-03-08
2004-01-0584
Increasing fuel costs and the desire for reduced dependence on foreign oil has brought the diesel engine to the forefront of future medium-duty vehicle applications in the United States due to its higher thermal efficiency and superior durability. The main obstacle to the increased use of diesel engines in this platform is the upcoming extremely stringent, Tier 2 emission standard. In order to succeed, diesel vehicles must comply with emissions standards while maintaining their excellent fuel economy. The availability of technologies such as common rail fuel injection systems, low sulfur diesel fuel, NOX adsorber catalysts (NAC), and diesel particle filters (DPFs) allow the development of powertrain systems that have the potential to comply with these future requirements. In meeting the Tier 2 emissions standards, the heavy light-duty trucks (HLDTs) and medium-duty passenger vehicles (MDPVs) will face the greatest technological challenges. In support of this, the U.S.
Technical Paper

The Heavy-Duty Gasoline Engine - An Alternative to Meet Emissions Standards of Tomorrow

2004-03-08
2004-01-0984
A technology path has been identified for development of a high efficiency, durable, gasoline engine, targeted at achieving performance and emissions levels necessary to meet heavy-duty, on-road standards of the foreseeable future. Initial experimental and numerical results for the proposed technology concept are presented. This work summarizes internal research efforts conducted at Southwest Research Institute. An alternative combustion system has been numerically and experimentally examined. The engine utilizes gasoline as the fuel, with a combination of enabling technologies to provide high efficiency operation at ultra-low emissions levels. The concept is based upon very highly-dilute combustion of gasoline at high compression ratio and boost levels. Results from the experimental program have demonstrated engine-out NOx emissions of 0.06 g/hp/hr, at single-cylinder brake thermal efficiencies (BTE) above thirty-four percent.
Technical Paper

Technical Advantages of Urea SCR for Light-Duty and Heavy-Duty Diesel Vehicle Applications

2004-03-08
2004-01-1292
The 2007 emission standards for both light-duty and heavy-duty diesel vehicles remain a challenge. A level of about 90% NOx conversion is required to meet the standards. Technologies that have the most potential to achieve very high NOx conversion at low temperatures of diesel exhaust are lean NOx traps (LNTs) and Selective Catalytic Reduction (SCR) of NOx using aqueous urea, typically known as Urea SCR. The LNT has the advantage of requiring no new infrastructure, and does not pose any new customer compliance issues. However, Urea SCR has high and durable NOx conversion in a wider temperature window, a lower equivalent fuel penalty, and lower system cost. On a technical basis, Urea SCR has the best chance of meeting the 2007 NOx targets. This paper reviews the results of some demonstration programs for both light-and heavy-duty applications.
X