Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Effect of Substituted Phenol Fuel Additives on Ignition Delay of a Toluene Reference Fuel

2022-03-29
2022-01-0516
Aromatics have long been used in pump-grade gasoline to inhibit engine knock and enhance a fuel’s octane number, therefore this study focuses on how the addition of aromatics at 2% by mole affects the ignition characteristics of a Toluene Reference Fuel (TRF). The additives investigated in this study are the substituted phenols p-cresol and 2,6-xylenol. In addition to fuel composition, exhaust gas recirculation dilution can be used to lower the combustion temperature and consequently lengthen the ignition delay time of a given fuel-air mixture. This study replicated exhaust gas recirculation dilution by using N2, as it was inert and did not interfere with reactions between the fuel and oxidizer. Determination of whether the similar structures of p-cresol and 2,6-xylenol result in different autoignition inhibiting characteristics was performed on a rapid compression machine.
Technical Paper

Ignition Delay Time of a Toluene Reference Fuel with Substituted Phenol Additives

2023-04-11
2023-01-0321
Rapid compression machines can be used to measure a fuel’s ignition delay time and develop an understanding of its resistance to autoignition. Continuing developments in engine design demand higher octane fuels that are resistant to autoignition. Substituted phenols are members of the aromatic hydrocarbon family, and aromatics like toluene are often added to pump-grade gasoline to increase the fuel octane number. Previous numerical and experimental studies have found that substituted phenols included at additive levels in gasoline surrogates, such as the toluene reference fuel in this study, may have a lengthening effect on the ignition delay time of the base fuel they are added to.
Technical Paper

Laminar Burning Velocities of Diluted Stoichiometric Hydrogen/Air Mixtures

2023-04-11
2023-01-0331
Since its implementation, exhaust gas recirculation has proven to be a reliable technique to control NOx emissions by lowering combustion temperature. Dilution with exhaust gas recirculation, whether in internal combustion engines or sequential-staged gas turbine combustors, affects flame reactivity and stability, which are related to the heat release rate and engine power. Another way to control emissions is to use hydrogen as a carbon-free alternative fuel, which is considered a milestone in the energy-decarbonization journey. However, the high reactivity of hydrogen is one of its hurdles and understanding this effect on laminar burning velocity is important. Flame propagation and burning velocity control the mixture reactivity and exothermicity and are related to abnormal combustion phenomena, such as flashback and knock. Therefore, understanding the effect of exhaust gas addition on the laminar burning velocity of hydrogen/air mixtures is imperative for engine design.
X