Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Test Method for Seat Wrinkling and Bagginess

2012-05-22
This study evaluates utilizing an accelerated test method that correlates customer interaction with a vehicle seat where bagginess and wrinkling is produced. The evaluation includes correlation from warranty returns as well as test vehicle results for test verification. Consumer metrics will be discussed within this paper with respect to potential application of this test method, including but not limited to JD Power ratings. The intent of the test method is to aid in establishing appropriate design parameters of the seat trim covers and to incorporate appropriate design measures such as tie downs and lamination. This test procedure was utilized in a Design for Six Sigma (DFSS) project as an aid in optimizing seat parameters influencing trim cover performance using a Design of Experiment approach. Presenter Lisa Fallon, General Motors LLC
Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode. Presenter Seung-il Moon
Journal Article

Realization of Ground Effects on Snowmobile Pass-by Noise Testing

2009-05-19
2009-01-2229
Noise concerns regarding snowmobiles have increased in the recent past. Current standards, such as SAE J192 are used as guidelines for government agencies and manufacturers to regulate noise emissions for all manufactured snowmobiles. Unfortunately, the test standards available today produce results with variability that is much higher than desired. The most significant contributor to the variation in noise measurements is the test surface. The test surfaces can either be snow or grass and affects the measurement in two very distinct ways: sound propagation from the source to the receiver and the operational behavior of the snowmobile. Data is presented for a known sound pressure speaker source and different snowmobiles on various test days and test surfaces. Relationships are shown between the behavior of the sound propagation and track interaction to the ground with the pass-by noise measurements.
Journal Article

Assessment of Multiple Injection Strategies in a Direct-Injection Hydrogen Research Engine

2009-06-15
2009-01-1920
Hydrogen is widely considered a promising fuel for future transportation applications for both, internal combustion engines and fuel cells. Due to their advanced stage of development and immediate availability hydrogen combustion engines could act as a bridging technology towards a wide-spread hydrogen infrastructure. Although fuel cell vehicles are expected to surpass hydrogen combustion engine vehicles in terms of efficiency, the difference in efficiency might not be as significant as widely anticipated [1]. Hydrogen combustion engines have been shown capable of achieving efficiencies of up to 45 % [2]. One of the remaining challenges is the reduction of nitric oxide emissions while achieving peak engine efficiencies. This paper summarizes research work performed on a single-cylinder hydrogen direct injection engine at Argonne National Laboratory.
Journal Article

Truck Utility & Functionality in the GM 2-Mode Hybrid

2010-04-12
2010-01-0826
The present production General Motors 2-Mode Hybrid system for full-size SUVs and pickup trucks integrates truck utility functions with a full hybrid system. The 2-mode hybrid system incorporates two electro-mechanical power-split operating modes with four fixed-gear ratios. The combination provides fuel savings from electric assist, regenerative braking and low-speed electric vehicle operation. The combination of two power-split modes reduces the amount of mechanical power that is converted to electric power for continuously variable transmission operation, meeting the utility required for SUVs and trucks. This paper describes how fuel economy functionality was blended with full-size truck utility functions. Truck functions described include: Manual Range Select, Cruise Control, 4WD-Low and continuous high load operation.
Journal Article

Measurement of Regulated and Unregulated Exhaust Emissions from Snowmobiles in the 2009 SAE Clean Snowmobile Challenge

2010-09-28
2010-32-0126
Alternative and renewable fuels show tremendous promise for addressing concerns of energy security, energy supply, and CO₂ emissions. However, the new fuels have the potential to produce non-regulated exhaust components that may be as detrimental or worse, than currently regulated emissions components. For the 2009 SAE Clean Snowmobile Challenge (CSC), a commercially available Fourier Transform Infrared (FTIR) spectrometer was used to sample raw exhaust from eight student teams' snowmobiles for comparative analysis with a conventional emissions bench. The levels of CO₂, CO, NO , O₂, and THC were compared for the five operating modes, which included both gasoline- and diesel-powered snowmobiles. The fuel was either an ethanol blend for spark-ignition engines or a biodiesel for compression-ignition engines. Final emissions result scores varied by less than 2% between the conventional emissions bench and the FTIR.
Journal Article

The Impact of Spark Discharge Pattern on Flame Initiation in a Turbulent Lean and Dilute Mixture in a Pressurized Combustion Vessel

2013-04-08
2013-01-1627
An operational scheme with fuel-lean and exhaust gas dilution in spark-ignited engines increases thermal efficiency and decreases NOx emission, while these operations inherently induce combustion instability and thus large cycle-to-cycle variation in engine. In order to stabilize combustion variations, the development of an advanced ignition system is becoming critical. To quantify the impact of spark-ignition discharge, ignitability tests were conducted in an optically accessible combustion vessel to characterize the flame kernel development of lean methane-air mixture with CO₂ simulating exhaust diluent. A shrouded fan was used to generate turbulence in the vicinity of J-gap spark plug and a Variable Output Ignition System (VOIS) capable of producing a varied set of spark discharge patterns was developed and used as an ignition source. The main feature of the VOIS is to vary the secondary current during glow discharge including naturally decaying and truncated with multiple strikes.
Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
Journal Article

Reduction of Steady-State CFD HVAC Simulations into a Fully Transient Lumped Parameter Network

2014-05-10
2014-01-9121
Since transient vehicle HVAC computational fluids (CFD) simulations take too long to solve in a production environment, the goal of this project is to automatically create a lumped-parameter flow network from a steady-state CFD that solves nearly instantaneously. The data mining algorithm k-means is implemented to automatically discover flow features and form the network (a reduced order model). The lumped-parameter network is implemented in the commercial thermal solver MuSES to then run as a fully transient simulation. Using this network a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track localized temperatures near specific objects (such as equipment in vehicles).
Journal Article

Engineered Surface Features for Brake Discs to Improve Performance in Fade Conditions

2013-09-30
2013-01-2039
Driving on the race track is an especially grueling situation for the automotive brake system. Temperatures can exceed the phase transition temperature of the disc material, wear rates of friction material can be orders of magnitude higher than during street use, and hydraulic pressures and mechanical stresses on components can approach their design limits. It is a given that friction material under these conditions will wear unevenly - causing taper and cupping wear - and an associated set of performance degradations will occur, including an increase in fluid consumption (pedal travel increase) and loss of mechanical efficiency (pedal force increase).
Journal Article

A Fatigue Life Prediction Method of Laser Assisted Self-Piercing Rivet Joint for Magnesium Alloys

2015-04-14
2015-01-0537
Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
Journal Article

A Practical Simulation Procedure using CFD to Predict Flow Induced Sound of a Turbocharger Compressor

2015-04-14
2015-01-0662
A turbocharger is currently widely used to boost performance of an internal combustion engine. Generally, a turbocharger consists of a compressor which typically is driven by an exhaust turbine. The compressor will influence how the low frequency engine pulsation propagates in the intake system. The compressor will also produce broad-band flow induced sound due to the turbulence flow and high frequency narrowband tonal sound which is associated with rotating blade pressures. In this paper, a practical simulation procedure based on a computational fluid dynamics (CFD) approach is developed to predict the flow induced sound of a turbocharger compressor. In the CFD model of turbocharger compressor, the unsteady, moving wheel, detached eddy simulation (DES) approach are utilized. In this manner, both the broad-band and narrow-band flow induced sound are directly resolved in the CFD computation.
Journal Article

Model-Based Control-Oriented Combustion Phasing Feedback for Fast CA50 Estimation

2015-04-14
2015-01-0868
The highly transient operational nature of passenger car engines makes cylinder pressure based feedback control of combustion phasing difficult. The problem is further complicated by cycle-to-cycle combustion variation. A method for fast and accurate differentiation of normal combustion variations and true changes in combustion phasing is addressed in this research. The proposed method combines the results of a feed forward combustion phasing prediction model and “noisy” measurements from cylinder pressure using an iterative estimation technique. A modified version of an Extended Kalman Filter (EKF) is applied to calculate optimal estimation gain according to the stochastic properties of the combustion phasing measurement at the corresponding engine operating condition. Methods to improve steady state CA50 estimation performance and adaptation to errors are further discussed in this research.
Technical Paper

In-Depth Considerations for Electric Vehicle Braking Systems Operation with Steep Elevation Changes and Trailering

2021-10-11
2021-01-1263
As the automotive industry prepares to roll out an unprecedented range of fully electric propulsion vehicle models over the next few years - it really brings to a head for folks responsible for brakes what used to be the subject of hypothetical musings and are now pivotal questions for system design. How do we really go about designing brakes for electric vehicles, in particular, for the well-known limit condition of descending a steep grade? What is really an “optimal’ design for brakes considering the imperatives for the entire vehicle? What are the real “limit conditions” for usage that drive the fundamental design? Are there really electric charging stations planned for or even already existing in high elevations that can affect regenerative brake capacity on the way down? What should be communicated to drivers (if anything) about driving habits for electric vehicles in routes with significant elevation change?
Technical Paper

Impact of CO2 Dilution on Ignition Delay Times of Full Blend Gasolines in a Rapid Compression Machine

2021-09-21
2021-01-1199
Autoignition delay times of two full blend gasoline fuels (high and low RON) were explored in a rapid compression machine. CO2 dilution by mass was introduced at 0%, 15%, and 30% levels with the O2:N2 mole ratio fixed at 1:3.76. This dilution strategy is used to represent exhaust gas recirculation (EGR) substitution in spark ignition (SI) engines by using CO2 as a surrogate for major EGR constituents(N2, CO2, H2O). Experiments were conducted over the temperature range of 650K-900K and at 10 bar and 20 bar compressed pressure conditions for equivalence ratios of (Φ =) 0.6-1.3. The full blend fuels were admitted directly into the combustion chamber for mixture preparation using the direct test chamber (DTC) approach. CO2 addition retarded the autoignition times for the fuels studied here. The retarding effect of the CO2 dilution was more pronounced in the NTC region when compared to the lower and higher temperature range.
Technical Paper

Representing SUV as a 2D Beam Carrying Spring-Mass Systems to Compute Powertrain Bounce Mode

2021-08-31
2021-01-1116
Accurate prediction of in-vehicle powertrain bounce mode is necessary to ensure optimum responses are achieved at driver’s touch points during 4post shake or rough road shake events. But, during the early stages of vehicle development, building a detailed vehicle finite element (FE) model is not possible and often powertrain bounce modes are computed assuming the powertrain to be a stand-alone unit. Studies conducted on FE models of a large SUV with body on frame architecture showed that the stand-alone approach overestimates the powertrain bounce mode. Consequently, there is a need for a simplified version of vehicle model which can be built early on to compute powertrain modes. Previously, representing all the major components as rigid entities, simplified unibody vehicle models have been built to compute powertrain modes. But such an approach would be inaccurate here, for a vehicle with body on frame architecture due to the flexible nature of the frame (even at low frequencies).
Technical Paper

Comparison of the Particulate Matter Index and Particulate Evaluation Index Numbers Calculated by Detailed Hydrocarbon Analysis by Gas Chromatography (Enhanced ASTM D6730) and Vacuum Ultraviolet Paraffin, Isoparaffin, Olefin, Naphthene, and Aromatic Analysis (ASTM D8071)

2021-08-16
2021-01-5070
The Particulate Matter Index (PMI) is a tool that provides an indication of a fuel’s tendency to produce Particulate Matter (PM) emissions. Currently, the index is being used by various fuel laboratories and the Automotive OEMs as a tool to understand the gasoline fuel’s impact on both PM from engine hardware and vehicle-out emissions. In addition, a newer index that could be used to give an indication of the PM tendency of the gasoline range fuels, called the Particulate Evaluation Index (PEI), is shown to have a good correlation to PMI. The data used in those indices are collected from chemical analytical methods. This paper will compare gas chromatography (GC) methods used by three laboratories and discuss how the different techniques may affect the PMI and PEI calculation.
Technical Paper

Effect of Battery Temperature on Fuel Economy and Battery Aging When Using the Equivalent Consumption Minimization Strategy for Hybrid Electric Vehicles

2020-04-14
2020-01-1188
Battery temperature variations have a strong effect on both battery aging and battery performance. Significant temperature variations will lead to different battery behaviors. This influences the performance of the Hybrid Electric Vehicle (HEV) energy management strategies. This paper investigates how variations in battery temperature will affect Lithium-ion battery aging and fuel economy of a HEV. The investigated energy management strategy used in this paper is the Equivalent Consumption Minimization Strategy (ECMS) which is a well-known energy management strategy for HEVs. The studied vehicle is a Honda Civic Hybrid and the studied battery, a BLS LiFePO4 3.2Volts 100Ah Electric Vehicle battery cell. Vehicle simulations were done with a validated vehicle model using multiple combinations of highway and city drive cycles. The battery temperature variation is studied with regards to outside air temperature.
Technical Paper

IC Engine Internal Cooling System Modelling Using 1D-CFD Methodology

2020-04-14
2020-01-1168
Internal combustion engine gets heated up due to continuous combustion of fuel. To keep engine working efficiently and prevent components damage due to very high temperature, the engine needs to be cooled down. Based on power output requirement and provision for cooling system, every engine has it’s unique cooling system. Liquid based cooling systems are majorly implemented in automobile. It’s important to keep in mind that during design phase that, cooling the engine will lower the power to fuel consumption ratio. Therefore, during lower ambient conditions, the cooling system should be able to uniformly increase the temperature of the engine components, engine oil and transmission oil. This is achieved by circulating the coolant through cooling jacket, engine oil heater and transmission oil heater, which will be heated by the combustion heat.
X