Refine Your Search

Topic

Search Results

Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
Journal Article

Reduction of Steady-State CFD HVAC Simulations into a Fully Transient Lumped Parameter Network

2014-05-10
2014-01-9121
Since transient vehicle HVAC computational fluids (CFD) simulations take too long to solve in a production environment, the goal of this project is to automatically create a lumped-parameter flow network from a steady-state CFD that solves nearly instantaneously. The data mining algorithm k-means is implemented to automatically discover flow features and form the network (a reduced order model). The lumped-parameter network is implemented in the commercial thermal solver MuSES to then run as a fully transient simulation. Using this network a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track localized temperatures near specific objects (such as equipment in vehicles).
Technical Paper

Probing Spark Discharge Behavior in High-speed Cross-flows through Modeling and Experimentation

2020-04-14
2020-01-1120
This paper presents a combined numerical and experimental investigation of the characteristics of spark discharge in a spark-ignition engine. The main objective of this work is to gain insights into the spark discharge process and early flame kernel development. Experiments were conducted in an inert medium within an optically accessible constant-volume combustion vessel. The cross-flow motion in the vessel was generated using a previously developed shrouded fan. Numerical modeling was based on an existing discharge model in the literature developed by Kim and Anderson. However, this model is applicable to a limited range of gas pressures and flow fields. Therefore, the original model was evaluated and improved to predict the behavior of spark discharge at pressurized conditions up to 45 bar and high-speed cross-flows up to 32 m/s. To accomplish this goal, a parametric study on the spark channel resistance was conducted.
Journal Article

An Efficient Level-Set Flame Propagation Model for Hybrid Unstructured Grids Using the G-Equation

2016-04-05
2016-01-0582
Computational fluid dynamics of gas-fueled large-bore spark ignition engines with pre-chamber ignition can speed up the design process of these engines provided that 1) the reliability of the results is not affected by poor meshing and 2) the time cost of the meshing process does not negatively compensate for the advantages of running a computer simulation. In this work a flame propagation model that runs with arbitrary hybrid meshes was developed and coupled with the KIVA4-MHI CFD solver, in order to address these aims. The solver follows the G-Equation level-set method for turbulent flame propagation by Tan and Reitz, and employs improved numerics to handle meshes featuring different cell types such as hexahedra, tetrahedra, square pyramids and triangular prisms. Detailed reaction kinetics from the SpeedCHEM solver are used to compute the non-equilibrium composition evolution downstream and upstream of the flame surface, where chemical equilibrium is instead assumed.
Technical Paper

Experimental Investigation of the Compression Ignition Process of High Reactivity Gasoline Fuels and E10 Certification Gasoline using a High-Pressure Direct Injection Gasoline Injector

2020-04-14
2020-01-0323
Gasoline compression ignition (GCI) technology shows the potential to obtain high thermal efficiencies while maintaining low soot and NOx emissions in light-duty engine applications. Recent experimental studies and numerical simulations have indicated that high reactivity gasoline-like fuels can further enable the benefits of GCI combustion. However, there is limited empirical data in the literature studying the gasoline compression ignition process at relevant in-cylinder conditions, which are required for further optimizing combustion system designs. This study investigates the temporal and spatial evolution of the compression ignition process of various high reactivity gasoline fuels with research octane numbers (RON) of 71, 74 and 82, as well as a conventional RON 97 E10 gasoline fuel. A ten-hole prototype gasoline injector specifically designed for GCI applications capable of injection pressures up to 450 bar was used.
Technical Paper

Alleviating the Magnetic Effects on Magnetometers Using Vehicle Kinematics for Yaw Estimation for Autonomous Ground Vehicles

2020-04-14
2020-01-1025
Autonomous vehicle operation is dependent upon accurate position estimation and thus a major concern of implementing the autonomous navigation is obtaining robust and accurate data from sensors. This is especially true, in case of Inertial Measurement Unit (IMU) sensor data. The IMU consists of a 3-axis gyro, 3-axis accelerometer, and 3-axis magnetometer. The IMU provides vehicle orientation in 3D space in terms of yaw, roll and pitch. Out of which, yaw is a major parameter to control the ground vehicle’s lateral position during navigation. The accelerometer is responsible for attitude (roll-pitch) estimates and magnetometer is responsible for yaw estimates. However, the magnetometer is prone to environmental magnetic disturbances which induce errors in the measurement.
Technical Paper

Application of Signature Analysis and Operating Deflection Shapes to Identify Interior Noise Sources in an Excavator

2007-05-15
2007-01-2427
The objective of this study was to identify and gain an understanding of the origins of noise in a commercial excavator cab. This paper presents the results of two different tests that were used to characterize the vibration and acoustic characteristics of the excavator cab. The first test was done in an effort to characterize the vibration properties of the cab panels and their associated contribution to the noise level inside the cab. The second set, of tests, was designed to address the contribution of the external airborne noise produced by the engine and hydraulic pump to the overall interior noise. This paper describes the test procedures used to obtain the data for the signature analysis, operational deflection shapes (ODS), and sound diagnosis analysis. It also contains a discussion of the analysis results and an inside look into the possible contributors of key frequencies to the interior noise in the excavator cab.
Technical Paper

Global Optimization of a Two-Pulse Fuel Injection Strategy for a Diesel Engine Using Interpolation and a Gradient-Based Method

2007-04-16
2007-01-0248
A global optimization method has been developed for an engine simulation code and utilized in the search of optimal fuel injection strategies. This method uses a Lagrange interpolation function which interpolates engine output data generated at the vertices and the intermediate points of the input parameters. This interpolation function is then used to find a global minimum over the entire parameter set, which in turn becomes the starting point of a CFD-based optimization. The CFD optimization is based on a steepest descent method with an adaptive cost function, where the line searches are performed with a fast-converging backtracking algorithm. The adaptive cost function is based on the penalty method, where the penalty coefficient is increased after every line search. The parameter space is normalized and, thus, the optimization occurs over the unit cube in higher-dimensional space.
Technical Paper

Evaluation of Injector Location and Nozzle Design in a Direct-Injection Hydrogen Research Engine

2008-06-23
2008-01-1785
The favorable physical properties of hydrogen (H2) make it an excellent alternative fuel for internal combustion (IC) engines and hence it is widely regarded as the energy carrier of the future. Hydrogen direct injection provides multiple degrees of freedom for engine optimization and influencing the in-cylinder combustion processes. This paper compares the results in the mixture formation and combustion behavior of a hydrogen direct-injected single-cylinder research engine using two different injector locations as well as various injector nozzle designs. For this study the research engine was equipped with a specially designed cylinder head that allows accommodating a hydrogen injector in a side location between the intake valves as well as in the center location adjacent to the spark plug.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

Conjugate Heat Transfer in CI Engine CFD Simulations

2008-04-14
2008-01-0973
The development of new high power diesel engines is continually going for increased mean effective pressures and consequently increased thermal loads on combustion chamber walls close to the limits of endurance. Therefore accurate CFD simulation of conjugate heat transfer on the walls becomes a very important part of the development. In this study the heat transfer and temperature on piston surface was studied using conjugate heat transfer model along with a variety of near wall treatments for turbulence. New wall functions that account for variable density were implemented and tested against standard wall functions and against the hybrid near wall treatment readily available in a CFD software Star-CD.
Technical Paper

Determination of Heat Transfer Augmentation Due to Fuel Spray Impingement in a High-Speed Diesel Engine

2009-04-20
2009-01-0843
As the incentive to produce cleaner and more efficient engines increases, diesel engines will become a primary, worldwide solution. Producing diesel engines with higher efficiency and lower emissions requires a fundamental understanding of the interaction of the injected fuel with air as well as with the surfaces inside the combustion chamber. One aspect of this interaction is spray impingement on the piston surface. Impingement on the piston can lead to decreased combustion efficiency, higher emissions, and piston damage due to thermal loading. Modern high-speed diesel engines utilize high pressure common-rail direct-injection systems to primarily improve efficiency and reduce emissions. However, the high injection pressures of these systems increase the likelihood that the injected fuel will impinge on the surface of the piston.
Technical Paper

Valve Train Design for a New Gas Exchange Process

2004-03-08
2004-01-0607
The design and testing of the valve train for a new two-stroke diesel engine concept [1,2] is presented. The gas exchange of this process requires extremely fast-acting inlet valves, which constituted a very demanding designing task. A simulation model of the prototype valve train was constructed with commercially available software. The simulation program served as the main tool for optimizing the dynamic behavior of the valve train. The prototype valve train was built according to the simulations and valve acceleration measurements were performed in order to validate the simulation results. The simulations and measurements are presented in detail in this paper.
Technical Paper

Powersplit Hybrid Electric Vehicle Control with Electronic Throttle Control (ETC)

2003-10-27
2003-01-3280
This paper analyzes the control of the series-parallel powersplit used in the 2001 Michigan Tech FutureTruck. An electronic throttle controller is implemented and a new control algorithm is proposed and tested. A vehicle simulation has been created in MATLAB and the control algorithm implemented within the simulation. A program written in C has also been created that implements the control algorithm in the test vehicle. The results from both the simulation and test vehicle are presented and discussed and show a 15% increase in fuel economy. With the increase in fuel economy, and through the use of the original exhaust after treatment, lower emissions are also expected.
Technical Paper

Novel Two-Stroke Engine Concept, Feasibility Study

2003-10-27
2003-01-3211
A novel two-stroke engine concept is introduced. The cylinder scavenging takes place during the upward motion of the piston. The gas exchange valves are similar to typical four-stroke valves, but the intake valves are smaller and lighter. The scavenging air pressure is remarkably higher than in present-day engines. The high scavenging air pressure is produced by an external compressor. The two-stroke operation is achieved without the drawbacks of port scavenged engines. Moreover, the combustion circumstances, charge pressure and temperature and internal exhaust gas re-circulation (EGR) can be controlled by using valve timings. There is good potential for a substantial reduction in NOx emissions through the use of adjustable compression pressure and temperature and by using the adjustable amount of exhaust gas re-circulation.
Technical Paper

Modeling of Human Response From Vehicle Performance Characteristics Using Artificial Neural Networks

2002-05-07
2002-01-1570
This study investigates a methodology in which the general public's subjective interpretation of vehicle handling and performance can be predicted. Several vehicle handling measurements were acquired, and associated metrics calculated, in a controlled setting. Human evaluators were then asked to drive and evaluate each vehicle in a winter driving school setting. Using the acquired data, multiple linear regression and artificial neural network (ANN) techniques were used to create and refine mathematical models of human subjective responses. It is shown that artificial neural networks, which have been trained with the sets of objective and subjective data, are both more accurate and more robust than multiple linear regression models created from the same data.
Technical Paper

Modeling and Numerical Simulation of Diesel Particulate Trap Performance During Loading and Regeneration

2002-03-04
2002-01-1019
A 2-dimensional numerical model (MTU-FILTER) for a single channel of a honeycomb ceramic diesel particulate trap has been developed. The mathematical modeling of the filtration, flow, heat transfer and regeneration behavior of the particulate trap is described. Numerical results for the pressure drop and particulate mass were compared with existing experimental results. Parametric studies of the diesel particulate trap were carried out. The effects of trap size and inlet temperature on the trap performance are studied using the trap model. An approximate 2-dimensional analytical solution to the simplified Navier-Stokes equations was used to calculate the velocity field of the exhaust flow in the inlet and outlet channels. Assuming a similarity velocity profile in the channels, the 2-dimensional Navier-Stokes equations are approximated by 1-dimenisonal conservation equations, which is similar to those first developed by Bissett.
Technical Paper

Simulation of Non-Evaporating Diesel Sprays and Verification with Experimental Data

2002-03-04
2002-01-0946
Non-evaporating diesel sprays have been simulated utilizing the ETAB and the WAVE atomization and breakup models and have been compared with experimental data. The experimental penetrations and widths were determined from back-lit spray images and the droplet sizes have been measured by means of a Malvern particle sizer. The model evaluation criteria include the spray penetration, the spray width and the local droplet size. The comparisons have been performed for variations of the injection pressure, the gas density and the fuel viscosity. The fuel nozzle exit velocities used in the simulations have been computed with a special code that considers the effect of in-nozzle cavitation. The simulations showed good overall agreement with experimental data. However, the capabilities of the models to predict the droplet size for different fuels could be improved.
Technical Paper

Carbureted SI Engine Air Flow Measurements

2016-04-05
2016-01-1082
Measurement of internal combustion engine air flow is challenging due to the required modification of the intake system and subsequent change in the air flow pattern. In this paper, various surge tank volumes were investigated to improve the accuracy of measuring air flow rate into a 674-cm3, four-stroke, liquid-cooled, internal combustion engine. According to the experimental results, when the venturi meter is used to measure the intake air flow rate, an air surge tank is required to be installed downstream of the venturi to smoothen the air flow. Moreover, test results revealed that increasing air surge tank volume beyond a limit could have a negative effect on the engine performance parameters especially in carbureted engines where controlling AFR is difficult. Although the air flow rate into the engine changed with increasing tank volume, the air-fuel ratio was leaner for smaller tank volumes.
Technical Paper

Easily Verifiable Adaptive Sliding Mode Controller Design with Application to Automotive Engines

2016-04-05
2016-01-0629
Verification and validation (V&V) are essential stages in the design cycle of industrial controllers to remove the gap between the designed and implemented controller. In this study, a model-based adaptive methodology is proposed to enable easily verifiable controller design based on the formulation of a sliding mode controller (SMC). The proposed adaptive SMC improves the controller robustness against major implementation imprecisions including sampling and quantization. The application of the proposed technique is demonstrated on the engine cold start emission control problem in a mid-size passenger car. The cold start controller is first designed in a single-input single-output (SISO) structure with three separate sliding surfaces, and then is redesigned based on a multiinput multi-output (MIMO) SMC design technique using nonlinear balanced realization.
X