Refine Your Search

Topic

Author

Search Results

Journal Article

Impact and Manufacturing Defect Visualization of Space Launcher Aluminum Liner/Filament Wound Composite Fuel Tank using Ultrasonic Propagation Imaging System

2013-09-17
2013-01-2256
We applied ultrasonic propagation imaging (UPI) system for rapid and reliable quality control of fuel tanks for a space launcher. The fuel tank is an aluminum-lined CFRP propellant tank. The UPI system uses Q-switched laser (QL) to generate ultrasonic wave on the test specimen, and laser mirror scanner (LMS) to control the laser impinging point that scans the area of interest with high speed. Each ultrasonic wave generated by laser impinging was received by a piezoelectric sensor with coordinate information of the scanned area. After ultrasonic propagation image processing, results with impact damage and manufacturing defect information of the fuel tank were presented.
Technical Paper

Numerical Parametric Study of a Six-Stroke Gasoline Compression Ignition (GCI) Engine Combustion- Part II

2020-04-14
2020-01-0780
In order to extend the operability limit of the gasoline compression ignition (GCI) engine, as an avenue for low temperature combustion (LTC) regime, the effects of parametric variations of engine operating conditions on the performance of six-stroke GCI (6S-GCI) engine cycle are numerically investigated, using an in-house 3D CFD code coupled with high-fidelity physical sub-models along with the Chemkin library. The combustion and emissions were calculated using a skeletal chemical kinetics mechanism for a 14-component gasoline surrogate fuel. Authors’ previous study highlighted the effects of the variation of injection timing and split ratio on the overall performance of 6S-GCI engine and the unique mixing-controlled burning mode of the charge mixtures during the two additional strokes. As a continuing effort, the present study details the parametric studies of initial gas temperature, boost pressure, fuel injection pressure, compression ratio, and EGR ratio.
Technical Paper

Investigation of Diesel-CNG RCCI Combustion at Multiple Engine Operating Conditions

2020-04-14
2020-01-0801
Past experimental studies conducted by the current authors on a 13 liter 16.7:1 compression ratio heavy-duty diesel engine have shown that diesel-Compressed Natural Gas (CNG) Reactivity Controlled Compression Ignition (RCCI) combustion targeting low NOx emissions becomes progressively difficult to control as the engine load is increased. This is mainly due to difficulty in controlling reactivity levels at higher loads. For the current study, CFD investigations were conducted in CONVERGE using the SAGE combustion solver with the application of the Rahimi mechanism. Studies were conducted at a load of 5 bar BMEP to validate the simulation results against RCCI experimental data. In the low load study, it was found that the Rahimi mechanism was not able to predict the RCCI combustion behavior for diesel injection timings advanced beyond 30 degCA bTDC. This poor prediction was found at multiple engine speed and load points.
Technical Paper

Experimental Investigation of the Compression Ignition Process of High Reactivity Gasoline Fuels and E10 Certification Gasoline using a High-Pressure Direct Injection Gasoline Injector

2020-04-14
2020-01-0323
Gasoline compression ignition (GCI) technology shows the potential to obtain high thermal efficiencies while maintaining low soot and NOx emissions in light-duty engine applications. Recent experimental studies and numerical simulations have indicated that high reactivity gasoline-like fuels can further enable the benefits of GCI combustion. However, there is limited empirical data in the literature studying the gasoline compression ignition process at relevant in-cylinder conditions, which are required for further optimizing combustion system designs. This study investigates the temporal and spatial evolution of the compression ignition process of various high reactivity gasoline fuels with research octane numbers (RON) of 71, 74 and 82, as well as a conventional RON 97 E10 gasoline fuel. A ten-hole prototype gasoline injector specifically designed for GCI applications capable of injection pressures up to 450 bar was used.
Journal Article

Improvement of DME HCCI Engine Performance by Fuel Injection Strategies and EGR

2008-06-23
2008-01-1659
The combustion and exhaust emission characteristics of a DME fueled HCCI engine were investigated. Different fuel injection strategies were tested under various injection quantities and timings with exhaust gas recirculation (EGR). The combustion phase in HCCI was changed by an in-cylinder direct injection and EGR, due to changes in the in-cylinder temperature and mixture homogeneity. The gross indicated mean effective pressure (IMEPgross) increased and the hydrocarbon (HC) and carbon monoxide (CO) emissions decreased as the equivalence ratio was augmented. The IMEPgross with direct injection was greater than with the port injection due to retarded ignition timing resulting from latent heat of direct injected DME fuel. It was because that most of burn duration was completed before top dead center owing to higher ignitability for DME with high cetane number. However, HC and CO emissions were similar for both injection locations.
Journal Article

An Experimental and Numerical Study of Diesel Spray Impingement on a Flat Plate

2017-03-28
2017-01-0854
Combustion systems with advanced injection strategies have been extensively studied, but there still exists a significant fundamental knowledge gap on fuel spray interactions with the piston surface and chamber walls. This paper is meant to provide detailed data on spray-wall impingement physics and support the spray-wall model development. The experimental work of spray-wall impingement with non-vaporizing spray characterization, was carried out in a high pressure-temperature constant-volume combustion vessel. The simultaneous Mie scattering of liquid spray and schlieren of liquid and vapor spray were carried out. Diesel fuel was injected at a pressure of 1500 bar into ambient gas at a density of 22.8 kg/m3 with isothermal conditions (fuel, ambient, and plate temperatures of 423 K). A Lagrangian-Eulerian modeling approach was employed to characterize the spray-gas and spray-wall interactions in the CONVERGETM framework by means of a Reynolds-Averaged Navier-Stokes (RANS) formulation.
Journal Article

Internal Fuel Injector Deposits

2011-08-30
2011-01-1925
The need for improved emissions and fuel economy are placing increasingly severe performance requirements on compression ignition engines. These are satisfied in part by advanced fuel injection equipment that provide multiple injections and increased injection pressures along with higher operating temperature. Fuel composition is also changing, with increased use of non-traditional feedstocks combined with a range of additive chemistries to restore or enhance fuel quality. Within this environment, a number of worldwide automotive companies have noted a trend towards increased Internal Injector Deposits (IID). Little quantitative information to understand the root cause is available, largely due to difficulty in reproducing the issue under controlled conditions. The present study details the results of an accelerated test methodology, which is used to evaluate the interrelated effects of fuel composition and operating environment.
Technical Paper

Global Optimization of a Two-Pulse Fuel Injection Strategy for a Diesel Engine Using Interpolation and a Gradient-Based Method

2007-04-16
2007-01-0248
A global optimization method has been developed for an engine simulation code and utilized in the search of optimal fuel injection strategies. This method uses a Lagrange interpolation function which interpolates engine output data generated at the vertices and the intermediate points of the input parameters. This interpolation function is then used to find a global minimum over the entire parameter set, which in turn becomes the starting point of a CFD-based optimization. The CFD optimization is based on a steepest descent method with an adaptive cost function, where the line searches are performed with a fast-converging backtracking algorithm. The adaptive cost function is based on the penalty method, where the penalty coefficient is increased after every line search. The parameter space is normalized and, thus, the optimization occurs over the unit cube in higher-dimensional space.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

Particle Image Velocimetry Measurements of a Diesel Spray

2008-04-14
2008-01-0942
The current study was focused on flow field measurements of diesel sprays. The global fuel spray characteristics, such as spray penetration, have also been measured. Particle Image Velocimetry (PIV) was utilized for flow field measurements and the global spray characteristics were recorded with high-speed back light photographing. The flow field was scanned to get an idea of the compatibility of PIV technique applied to dense and high velocity sprays. It is well proven that the PIV technique can be utilized at areas of low number density of droplets, but the center of the spray is way beyond the ideal PIV measurement conditions. The depth at which accurate flow field information can be gathered was paid attention to.
Technical Paper

The Impact of Injection Strategies on Emissions Reduction and Power Output of Future Diesel Engines

2008-04-14
2008-01-0941
Future light, medium and heavy duty diesel engines will need to satisfy the more stringent emission levels (US 2014, Euro 6, etc.) without compromising their current performance and fuel economy, while still maintaining a competitive cost. In order to achieve this, the Fuel Injection Equipment (FIE) together with the pressure charging, cooling system, exhaust after treatment and other engine sub-systems will each play a key role. The FIE has to offer a range of flexible injection characteristics, e.g. a multiple injection train with or without separation, modulated injection pressures and rates for every injection, higher specific power output from the same injector envelope, and close control of very small fuel injection quantities. The aim of this paper is to present Delphi's developments in fuel injection strategies for light and medium duty diesel engines that will comply with future emission legislation, whilst providing higher power density and uncompromised fuel economy.
Technical Paper

Development of a 1-D CPF Model to Simulate Active Regeneration of a Diesel Particulate Filter

2009-04-20
2009-01-1283
A quasi-steady 1-dimensional computer model of a catalyzed particulate filter (CPF) capable of simulating active regeneration of the CPF via diesel fuel injection upstream of a diesel oxidation catalyst (DOC) or other means to increase the exhaust gas temperature has been developed. This model is capable of predicting gaseous species concentrations (HC's, CO, NO and NO2) and exhaust gas temperatures within and after the CPF, for given input values of gaseous species and PM concentrations before the CPF and other inlet variables such as time-varying temperature of the exhaust gas at the inlet of the CPF and volumetric flow rate of exhaust gas.
Technical Paper

Determination of Heat Transfer Augmentation Due to Fuel Spray Impingement in a High-Speed Diesel Engine

2009-04-20
2009-01-0843
As the incentive to produce cleaner and more efficient engines increases, diesel engines will become a primary, worldwide solution. Producing diesel engines with higher efficiency and lower emissions requires a fundamental understanding of the interaction of the injected fuel with air as well as with the surfaces inside the combustion chamber. One aspect of this interaction is spray impingement on the piston surface. Impingement on the piston can lead to decreased combustion efficiency, higher emissions, and piston damage due to thermal loading. Modern high-speed diesel engines utilize high pressure common-rail direct-injection systems to primarily improve efficiency and reduce emissions. However, the high injection pressures of these systems increase the likelihood that the injected fuel will impinge on the surface of the piston.
Technical Paper

Temperature Effect on Performance of a Commercial Fuel Filter for Biodiesel Blends with ULSD

2010-04-12
2010-01-0473
Biodiesel offers a potentially viable alternative fuel source for diesel automotive applications. However, biodiesel may present problems at colder temperatures due to the crystallization of fatty acid methyl esters and precipitation of other components, such as unreacted triglycerides and sterol glycosides in biodiesel. At lower temperatures, the fuel gels until it solidifies in the fuel lines, clogging the fuel filter, and shutting down the engine. A laboratory-based continuous loop fuel system was utilized to determine the flow properties at low temperatures of biodiesel in B100, B20, and B10 blends for soybean and choice white grease (pig fat) biodiesel fuel. The continuous loop fuel delivery system was designed to be similar to those that can be found in engines and vehicles currently in use, and provided a mechanical pump or an electric pump as a means to simulate systems found in the different types of vehicles.
Technical Paper

Combustion and Emission Characteristics in a Direct Injection LPG/Gasoline Spark Ignition Engine

2010-05-05
2010-01-1461
Combustion and emission characteristics of LPG(Liquefied Petroleum Gas) and gasoline fuels were compared in a single cylinder engine with direct fuel injection. While fuel injection pressure and IMEP(indicated mean effective pressure) were varied with 60, 90, 120 bar and 2 to 10 bar, another parameters for the engine operation as engine speed, air excess, and fuel injection timing were fixed at 1500 rpm, 1.0, and BTDC 300 CA respectively. Experimental results showed that MBT timing for LPG was less sensitive to IMEP, and high injection pressure made combustion stability worse at IMEP=2 bar. Through heat release analysis LPG showed shorter 10 and 90% MBD(mass burn duration) than gasoline due to fast flame speed and for both fuels injection pressure hardly affected burn duration. It was also found that thermal efficiency of LPG had a little higher than that of gasoline. Hydrocarbon emissions of gasoline rose to a level of three-fold than those of LPG.
Technical Paper

Diesel Spray Simulation and KH-RT Wave Model

2003-10-27
2003-01-3231
This study presents diesel spray breakup regimes and the wave model basic theory from literature. The RD wave model and the KH-RT wave model are explained. The implementation of the KH-RT wave model in a commercial CFD code is briefly presented. This study relies on experimental data from non-evaporating sprays that have earlier been measured at Helsinki University of Technology. The simulated fuel spray in a medium-speed diesel engine had a satisfactory match with the experimental data. The KH-RT wave model resulted in a much faster drop breakup than with the RD wave model. This resulted in a thin spray core with the KH-RT model. The fuel viscosity effect on drop sizes was well predicted by the KH-RT wave model.
Technical Paper

Advanced Two-Actuator EUI and Emission Reduction for Heavy-Duty Diesel Engines

2003-03-03
2003-01-0698
A very flexible choice of fuel injection characteristics can be obtained with an advanced electronic unit injector that has been developed with two electronically controlled valves. Single-cylinder engine tests have demonstrated the potential of this advanced EUI system for a heavy-duty diesel engine. Substantial increases in injection pressure can be programmed electronically at individual engine speed/load conditions, compared with a baseline EUI system, to provide much faster rates of air/fuel mixing. Simulated US and European emissions cycle results, with the optimised two-actuator EUI and EGR, show substantially improved soot particulate versus NOx results and lower BSFC compared with a baseline EUI result. A high-pressure post injection has the potential to give further soot reduction.
Technical Paper

Investigation of Combustion Knock Distribution in a Boosted Methane-Gasoline Blended Fueled SI Engine

2018-04-03
2018-01-0215
The characteristics of combustion knock metrics over a number of engine cycles can be an essential reference for knock detection and control in internal combustion engines. In a Spark-Ignition (SI) engine, the stochastic nature of combustion knock has been shown to follow a log-normal distribution. However, this has been derived from experiments done with gasoline only and applicability of log-normal distribution to dual-fuel combustion knock has not been explored. To evaluate the effectiveness and accuracy of log-normal distributed knock model for methane-gasoline blended fuel, a sweep of methane-gasoline blend ratio was conducted at two different engine speeds. Experimental investigation was conducted on a single cylinder prototype SI engine equipped with two fuel systems: a direct injection (DI) system for gasoline and a port fuel injection (PFI) system for methane.
Technical Paper

Development of a Transient Spray Cone Angle Correlation for CFD Simulations at Diesel Engine Conditions

2018-04-03
2018-01-0304
The accurate modeling of fuel spray behavior under diesel engine conditions requires well-characterized boundary conditions. Among those conditions, the spray cone angle is important due to its impact on the spray mixing process, flame lift-off locations and subsequent soot formation. The spray cone angle is a highly dynamic variable, but existing correlations have been developed mainly for diesel fuels at quasi-steady state and relatively low injection pressures. The objective of this study was to develop spray cone angle correlations for both diesel and a light-end gasoline fuel over a wide range of diesel-engine operating conditions that are capable of capturing both the transient and quasi-steady state processes. Two important macroscopic characteristics of solid cone sprays, the spray cone angle and spray penetration, were measured using a single-hole heavy-duty injector using two fuels at diesel engine conditions in an optical constant volume vessel.
Technical Paper

A Combustion Model for Multi-Component Fuels Based on Reactivity Concept and Single-Surrogate Chemistry Representation

2018-04-03
2018-01-0260
High fidelity engine simulation requires realistic fuel models. Although typical automotive fuels consist of more than few hundreds of hydrocarbon species, researches show that the physical and chemical properties of the real fuels could be represented by appropriate surrogate fuel models. It is desirable to represent the fuel using the same set of physical and chemical surrogate components. However, when the reaction mechanisms for a certain physical surrogate component is not available, the chemistry of the unmatched physical component is described using that of a similar chemical surrogate component at the expense of accuracy. In order to reduce the prediction error while maintaining the computational efficiency, a method of on-the-fly reactivity adjustment (ReAd) of chemical reaction mechanism along with fuel re-distribution based on reactivity is presented and tested in this study.
X