Refine Your Search

Topic

Author

Search Results

Journal Article

On the Ignition Behavior of JP-8 in Military Relevant Diesel Engines

2011-04-12
2011-01-0119
U.S. Army ground vehicles predominately use JP-8 as the energy source for ground vehicles based on the ‘one fuel forward policy’. Though this policy was enacted almost twenty years ago, there exists little fundamental JP-8 combustion knowledge at diesel engine type boundary conditions. Nevertheless, current U.S. Army ground vehicles predominately use commercial off-the-shelf or modified commercial diesel engines as the prime mover. Unique military engines are typically utilized when commercial products do not meet the mobility and propulsion system packaging requirements of the particular ground vehicle in question.
Journal Article

On the Premixed Phase Combustion Behavior of JP-8 in a Military Relevant Single Cylinder Diesel Engine

2011-04-12
2011-01-0123
Current U.S. Army ground vehicles predominately use commercial off-the-shelf or modified commercial diesel engines as the prime mover. Unique military engines are typically utilized when commercial products do not meet the mobility requirements of the particular ground vehicle in question. In either case, such engines traditionally have been calibrated using North American diesel fuel (DF-2) and Jet Propellant 8 (JP-8) compatibility wasn't given much consideration since any associated power loss due to the lower volumetric energy density was not an issue for most applications at then targeted climatic conditions. Furthermore, since the genesis of the ‘one fuel forward policy’ of using JP-8 as the single battlefield fuel there has been limited experience to truly assess fuel effects on diesel engine combustion systems until this decade.
Technical Paper

Effect of Battery Temperature on Fuel Economy and Battery Aging When Using the Equivalent Consumption Minimization Strategy for Hybrid Electric Vehicles

2020-04-14
2020-01-1188
Battery temperature variations have a strong effect on both battery aging and battery performance. Significant temperature variations will lead to different battery behaviors. This influences the performance of the Hybrid Electric Vehicle (HEV) energy management strategies. This paper investigates how variations in battery temperature will affect Lithium-ion battery aging and fuel economy of a HEV. The investigated energy management strategy used in this paper is the Equivalent Consumption Minimization Strategy (ECMS) which is a well-known energy management strategy for HEVs. The studied vehicle is a Honda Civic Hybrid and the studied battery, a BLS LiFePO4 3.2Volts 100Ah Electric Vehicle battery cell. Vehicle simulations were done with a validated vehicle model using multiple combinations of highway and city drive cycles. The battery temperature variation is studied with regards to outside air temperature.
Journal Article

Influence of Injection Duration and Ambient Temperature on the Ignition Delay in a 2.34L Optical Diesel Engine

2015-09-01
2015-01-1830
Non-conventional operating conditions and fuels in diesel engines can produce longer ignition delays compared to conventional diesel combustion. If those extended delays are longer than the injection duration, the ignition and combustion progress can be significantly influenced by the transient following the end of injection (EOI), and especially by the modification of the mixture field. The objective of this paper is to assess how those long ignition delays, obtained by injecting at low in-cylinder temperatures (e.g., 760-800K), are affected by EOI. Two multi-hole diesel fuel injectors with either six 0.20mm orifices or seven 0.14mm orifices have been used in a 2.34L single-cylinder optical diesel engine. We consider a range of ambient top dead center (TDC) temperatures at the start of injection from 760-1000K as well as a range of injection durations from 0.5ms to 3.1ms. Ignition delays are computed through the analysis of both cylinder pressure and chemiluminescence imaging.
Journal Article

Lightweight Stiffening Ribs in Structural Plates

2017-03-28
2017-01-0268
The aim of this analysis was to model the effect of adding stiffening ribs in structural aluminum components by friction stir processing (FSP) Nano material into the aluminum matrix. These stiffening ribs could dampen, redirect, or otherwise alter the transmission of energy waves created from automotive, ballistic, or blast shocks to improve noise, vibration, and harshness (NVH) and structural integrity (reduced joint stress) response. Since the ribs are not created by geometry changes they can be space efficient and deflect blast / ballistic energy better than geometry ribbing, resulting in a lighter weight solution. The blast and ballistic performance of different FSP rib patterns in AL 5182 and AL 7075 were simulated and compared to the performance of an equivalent weight of RHA plate FSP helps to increase localized strength and stiffness of the base metal, while achieving light weighting of the base metal.
Journal Article

Optimal Power Management of Vehicle Sourced Military Outposts

2017-03-28
2017-01-0271
This paper considers optimal power management during the establishment of an expeditionary outpost using battery and vehicle assets for electrical generation. The first step in creating a new outpost is implementing the physical protection and barrier system. Afterwards, facilities that provide communications, fires, meals, and moral boosts are implemented that steadily increase the electrical load while dynamic events, such as patrols, can cause abrupt changes in the electrical load profile. Being able to create a fully functioning outpost within 72 hours is a typical objective where the electrical power generation starts with batteries, transitions to gasoline generators and is eventually replaced by diesel generators as the outpost matures. Vehicles with power export capability are an attractive supplement to this electrical power evolution since they are usually on site, would reduce the amount of material for outpost creation, and provide a modular approach to outpost build-up.
Journal Article

Analysis and Control of a Torque Blended Hybrid Electric Powertrain with a Multi-Mode LTC-SI Engine

2017-03-28
2017-01-1153
Low Temperature Combustion (LTC) engines are promising to improve powertrain fuel economy and reduce NOx and soot emissions by improving the in-cylinder combustion process. However, the narrow operating range of LTC engines limits the use of these engines in conventional powertrains. The engine’s limited operating range can be improved by taking advantage of electrification in the powertrain. In this study, a multi-mode LTC-SI engine is integrated with a parallel hybrid electric configuration, where the engine operation modes include Homogeneous Charge Compression Ignition (HCCI), Reactivity Controlled Compression Ignition (RCCI), and conventional Spark Ignition (SI). The powertrain controller is designed to enable switching among different modes, with minimum fuel penalty for transient engine operations.
Technical Paper

Investigation of Diesel-CNG RCCI Combustion at Multiple Engine Operating Conditions

2020-04-14
2020-01-0801
Past experimental studies conducted by the current authors on a 13 liter 16.7:1 compression ratio heavy-duty diesel engine have shown that diesel-Compressed Natural Gas (CNG) Reactivity Controlled Compression Ignition (RCCI) combustion targeting low NOx emissions becomes progressively difficult to control as the engine load is increased. This is mainly due to difficulty in controlling reactivity levels at higher loads. For the current study, CFD investigations were conducted in CONVERGE using the SAGE combustion solver with the application of the Rahimi mechanism. Studies were conducted at a load of 5 bar BMEP to validate the simulation results against RCCI experimental data. In the low load study, it was found that the Rahimi mechanism was not able to predict the RCCI combustion behavior for diesel injection timings advanced beyond 30 degCA bTDC. This poor prediction was found at multiple engine speed and load points.
Journal Article

The Ignition Behavior of a Coal to Liquid Fischer-Tropsch Jet Fuel in a Military Relevant Single Cylinder Diesel Engine

2012-04-16
2012-01-1197
The U.S. Army currently uses JP-8 for global operations according to the "one fuel forward policy" that was enacted almost twenty years ago in order to help reduce the logistics burden of supplying a variety of fuels for given Department of Defense vehicle and base applications. One particular challenge with using global JP-8 is the lack of or too broad a range of specified combustion and fuel system affecting properties including ignition quality, high temperature viscosity, and lubricity. In addition to these challenges, the JP-8 fuel specification currently allows the use of blending with certain types of synthetic jet fuels up to 50% by volume. This blended fuel also doesn't include an ignition quality or high temperature viscosity specification, but does include a lubricity specification that is much less restrictive than DF-2.
Journal Article

An Experimental and Numerical Study of Diesel Spray Impingement on a Flat Plate

2017-03-28
2017-01-0854
Combustion systems with advanced injection strategies have been extensively studied, but there still exists a significant fundamental knowledge gap on fuel spray interactions with the piston surface and chamber walls. This paper is meant to provide detailed data on spray-wall impingement physics and support the spray-wall model development. The experimental work of spray-wall impingement with non-vaporizing spray characterization, was carried out in a high pressure-temperature constant-volume combustion vessel. The simultaneous Mie scattering of liquid spray and schlieren of liquid and vapor spray were carried out. Diesel fuel was injected at a pressure of 1500 bar into ambient gas at a density of 22.8 kg/m3 with isothermal conditions (fuel, ambient, and plate temperatures of 423 K). A Lagrangian-Eulerian modeling approach was employed to characterize the spray-gas and spray-wall interactions in the CONVERGETM framework by means of a Reynolds-Averaged Navier-Stokes (RANS) formulation.
Journal Article

Development of a Stationary Axle Efficiency Test Stand and Methodology for Identifying Fuel Efficient Gear Oils for Military Applications - Part 1

2017-03-28
2017-01-0889
For existing fleets such as the U.S. military ground vehicle fleet, there are few ways to reduce vehicle fuel consumption that don’t involve expensive retrofitting. Replacing standard lubricants with those that can achieve higher vehicle efficiencies is one practical and inexpensive way to improve fleet fuel efficiency. In an effort to identify axle gear lubricants that can reduce the fuel consumption of its fleet, the U.S. Army is developing a stationary axle efficiency test stand and procedure. In order to develop this capability, on-track vehicle fuel consumption testing was completed using light, medium, and heavy tactical wheeled vehicles following a modified SAE J1321 type test procedure. Tested lubricants included a baseline SAE 80W-90, a fuel efficient SAE 75W-90, and a fuel efficient SAE 75W-140. Vehicle testing resulted in reductions in fuel consumption of up to 2%.
Journal Article

Particulate Matter Characterization Studies in an HSDI Diesel Engine under Conventional and LTC Regime

2008-04-14
2008-01-1086
Several mechanisms are discussed to understand the particulate matter (PM) characterization in a high speed, direct injection, single cylinder diesel engine using low sulfur diesel fuel. This includes their formation, size distribution and number density. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios, therefore covering both conventional and low temperature combustion regimes. A micro dilution tunnel was used to immediately dilute a small part of the exhaust gases by hot air. A Scanning Mobility Particle Sizer (SMPS) was used to measure the particulate size distribution and number density. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the root cause of PM characterization and their relationship with the combustion process under different operating conditions.
Technical Paper

Characterizing the Effect of Automotive Torque Converter Design Parameters on the Onset of Cavitation at Stall

2007-05-15
2007-01-2231
This paper details a study of the effects of multiple torque converter design and operating point parameters on the resistance of the converter to cavitation during vehicle launch. The onset of cavitation is determined by an identifiable change in the noise radiating from the converter during operation, when the collapse of cavitation bubbles becomes detectable by nearfield acoustical measurement instrumentation. An automated torque converter dynamometer test cell was developed to perform these studies, and special converter test fixturing is utilized to isolate the test unit from outside disturbances. A standard speed sweep test schedule is utilized, and an analytical technique for identifying the onset of cavitation from acoustical measurement is derived. Effects of torque converter diameter, torus dimensions, and pump and stator blade designs are determined.
Technical Paper

Computational Optimization of a Split Injection System with EGR and Boost Pressure/Compression Ratio Variations in a Diesel Engine

2007-04-16
2007-01-0168
A previously developed CFD-based optimization tool is utilized to find optimal engine operating conditions with respect to fuel consumption and emissions. The optimization algorithm employed is based on the steepest descent method where an adaptive cost function is minimized along each line search using an effective backtracking strategy. The adaptive cost function is based on the penalty method, where the penalty coefficient is increased after every line search. The parameter space is normalized and, thus, the optimization occurs over the unit cube in higher-dimensional space. The application of this optimization tool is demonstrated for the Sulzer S20, a central-injection, non-road DI diesel engine. The optimization parameters are the start of injection of the two pulses of a split injection system, the duration of each pulse, the exhaust gas recirculation rate, the boost pressure and the compression ratio.
Technical Paper

Global Optimization of a Two-Pulse Fuel Injection Strategy for a Diesel Engine Using Interpolation and a Gradient-Based Method

2007-04-16
2007-01-0248
A global optimization method has been developed for an engine simulation code and utilized in the search of optimal fuel injection strategies. This method uses a Lagrange interpolation function which interpolates engine output data generated at the vertices and the intermediate points of the input parameters. This interpolation function is then used to find a global minimum over the entire parameter set, which in turn becomes the starting point of a CFD-based optimization. The CFD optimization is based on a steepest descent method with an adaptive cost function, where the line searches are performed with a fast-converging backtracking algorithm. The adaptive cost function is based on the penalty method, where the penalty coefficient is increased after every line search. The parameter space is normalized and, thus, the optimization occurs over the unit cube in higher-dimensional space.
Technical Paper

An Analysis of Regulated and Unregulated Emissions in an HSDI Diesel Engine under the LTC Regime

2007-04-16
2007-01-0905
Several mechanisms are discussed to understand the formation of both regulated and unregulated emissions in a high speed, direct injection, single cylinder diesel engine using low sulphur diesel fuel. Experiments were conducted over a wide range of injection pressures, EGR rates, injection timings and swirl ratios. The regulated emissions were measured by the standard emission equipment. Unregulated emissions such as aldehydes and ketones were measured by high pressure liquid chromatography and hydrocarbon speciation by gas chromatography. Particulate mass was measured with a Tapered Element Oscillating Microbalance (TEOM). Analysis was made of the sources of different emission species and their relationship with the combustion process under the different operating conditions. Special attention is given to the low temperature combustion (LTC) regime which is known to reduce both NOx and soot. However the HC, CO and unregulated emissions increased at a higher rate.
Technical Paper

Experimental Investigation of Single and Two-Stage Ignition in a Diesel Engine

2008-04-14
2008-01-1071
This paper presents an experimental investigation conducted to determine the parameters that control the behavior of autoignition in a small-bore, single-cylinder, optically-accessible diesel engine. Depending on operating conditions, three types of autoignition are observed: a single ignition, a two-stage process where a low temperature heat release (LTHR) or cool flame precedes the main premixed combustion, and a two-stage process where the LTHR or cool flame is separated from the main heat release by an apparent negative temperature coefficient (NTC) region. Experiments were conducted using commercial grade low-sulfur diesel fuel with a common-rail injection system. An intensified CCD camera was used for ultraviolet imaging and spectroscopy of chemiluminescent autoignition reactions under various operating conditions including fuel injection pressures, engine temperatures and equivalence ratios.
Technical Paper

Optimization of an Asynchronous Fuel Injection System in Diesel Engines by Means of a Micro-Genetic Algorithm and an Adaptive Gradient Method

2008-04-14
2008-01-0925
Optimal fuel injection strategies are obtained with a micro-genetic algorithm and an adaptive gradient method for a nonroad, medium-speed DI diesel engine equipped with a multi-orifice, asynchronous fuel injection system. The gradient optimization utilizes a fast-converging backtracking algorithm and an adaptive cost function which is based on the penalty method, where the penalty coefficient is increased after every line search. The micro-genetic algorithm uses parameter combinations of the best two individuals in each generation until a local convergence is achieved, and then generates a random population to continue the global search. The optimizations have been performed for a two pulse fuel injection strategy where the optimization parameters are the injection timings and the nozzle orifice diameters.
Technical Paper

Calibrating and Protecting Microphones to Allow Acoustic Measurements in Hazardous Environments

2009-05-19
2009-01-2163
Performing acoustic measurements on or near engines, transmissions, as well as in other circumstances where the environment is hazardous and harsh for microphones requires special precautions. Fluids inevitably leak, and the possibility of transducer damage can be very high without proper protection. Properly protecting microphones during testing allows for consistent data quality in these hazardous and difficult environments. While this paper will present the use of a 5 mil Nitrile cover which protects against many fluids within the scope of automotive testing, including water, hydrocarbons, and alcohols, as well as having good heat resistance and high strength, the concepts developed are applicable to other types of microphone protective mechanisms. Acoustic sensitivity was measured and used to calculate the change of the microphone's response after the treatment is applied, as well as after being exposed to various contaminants.
Technical Paper

Development of a 1-D CPF Model to Simulate Active Regeneration of a Diesel Particulate Filter

2009-04-20
2009-01-1283
A quasi-steady 1-dimensional computer model of a catalyzed particulate filter (CPF) capable of simulating active regeneration of the CPF via diesel fuel injection upstream of a diesel oxidation catalyst (DOC) or other means to increase the exhaust gas temperature has been developed. This model is capable of predicting gaseous species concentrations (HC's, CO, NO and NO2) and exhaust gas temperatures within and after the CPF, for given input values of gaseous species and PM concentrations before the CPF and other inlet variables such as time-varying temperature of the exhaust gas at the inlet of the CPF and volumetric flow rate of exhaust gas.
X