Refine Your Search

Topic

Search Results

Viewing 1 to 18 of 18
Journal Article

Model-Based Estimation and Control System Development in a Urea-SCR Aftertreatment System

2008-04-14
2008-01-1324
In this paper, a model-based linear estimator and a non-linear control law for an Fe-zeolite urea-selective catalytic reduction (SCR) catalyst for heavy duty diesel engine applications is presented. The novel aspect of this work is that the relevant species, NO, NO2 and NH3 are estimated and controlled independently. The ability to target NH3 slip is important not only to minimize urea consumption, but also to reduce this unregulated emission. Being able to discriminate between NO and NO2 is important for two reasons. First, recent Fe-zeolite catalyst studies suggest that NOx reduction is highly favored by the NO 2 based reactions. Second, NO2 is more toxic than NO to both the environment and human health. The estimator and control law are based on a 4-state model of the urea-SCR plant. A linearized version of the model is used for state estimation while the full nonlinear model is used for control design.
Journal Article

Impact of Biodiesel Impurities on the Performance and Durability of DOC, DPF and SCR Technologies

2011-04-12
2011-01-1136
It is estimated that operating continuously on a B20 fuel containing the current allowable ASTM specification limits for metal impurities in biodiesel could result in a doubling of ash exposure relative to lube-oil-derived ash. The purpose of this study was to determine if a fuel containing metals at the ASTM limits could cause adverse impacts on the performance and durability of diesel emission control systems. An accelerated durability test method was developed to determine the potential impact of these biodiesel impurities. The test program included engine testing with multiple DPF substrate types as well as DOC and SCR catalysts. The results showed no significant degradation in the thermo-mechanical properties of cordierite, aluminum titanate, or silicon carbide DPFs after exposure to 150,000 mile equivalent biodiesel ash and thermal aging. However, exposure of a cordierite DPF to 435,000 mile equivalent aging resulted in a 69% decrease in the thermal shock resistance parameter.
Technical Paper

High Performance Biodegradable Fluid Requirements for Mobile Hydraulic Systems

1998-04-08
981518
Technical groups worldwide have been actively developing specifications and requirements for biodegradable hydraulic fluids for mobile applications. These groups have recognized that an industry-wide specification is necessary due to the increase in environmental awareness in the agriculture, construction, forestry, and mining industries, and to the increasing number of local regulations primarily throughout Europe. Caterpillar has responded to this need by publishing a requirement, Caterpillar BF-1, that may be used by Caterpillar dealers, customers, and industry to help select high-performance biodegradable hydraulic fluids. This requirement was written with the input of several organizations that are known to be involved with the development of similar types of specifications and requirements.
Technical Paper

Adequacy of Reduced Order Models for Model-Based Control in a Urea-SCR Aftertreatment System

2008-04-14
2008-01-0617
Model-based control strategies are important for meeting the dual objective of maximizing NOx reduction and minimizing NH3 slip in urea-SCR catalysts. To be implementable on the vehicle, the models should capture the essential behavior of the system, while not being computationally intensive. This paper discusses the adequacy of two different reduced order SCR catalyst models and compares their performance with a higher order model. The higher order model assumes that the catalyst has both diffusion and reaction kinetics, whereas the reduced order models contain only reaction kinetics. After describing each model, its parameter identification and model validation based on experiments on a Navistar I6 7.6L engine are presented. The adequacy of reduced order models is demonstrated by comparing the NO, NO2 and NH3 concentrations predicted by the models to their concentrations from the test data.
Technical Paper

Development of an In-Service Snowmobile Emission Test Procedure For the SAE Clean Snowmobile Challenge

2009-11-02
2009-01-2625
As concerns over air pollution continue to increase, all vehicles are subject to greater scrutiny for their emissions levels. Snowmobiles and other off-road recreational vehicles are now required to meet emissions regulations enacted by the United States Environmental Protection Agency (EPA). Currently these vehicles are certified using a stationary test procedure with the engine operating attached to a dynamometer and following a five-mode test cycle. The five modes range from idle to wide open throttle and are chosen to represent the typical operation regime of a vehicle. In addition, the EPA five-mode stationary emissions test has been traditionally used for scoring competition snowmobiles at the SAE Clean Snowmobile Challenge (CSC). For the 2009 CSC, in-service emission testing was added to the competition to score the teams on actual, in-use emissions during operation of their competition snowmobile operated on a controlled test course.
Technical Paper

Oxidation Catalytic Converter and Emulsified Fuel Effects on Heavy-Duty Diesel Engine Particulate Matter Emissions

2002-03-04
2002-01-1278
The effects of an oxidation catalytic converter (OCC), an emulsified fuel, and their combined effects on particle number and volume concentrations compared to those obtained when using a basefuel were studied. Particle size and particulate emission measurements were conducted at three operating conditions; idle (850 rpm, 35 Nm), Mode 11 (1900 rpm, 277 Nm) and Mode 9 (1900 rpm, 831 Nm) of the EPA 13 mode cycle. The individual effects of the emulsified fuel and the OCC as well as their combined effects on particle number and volume concentrations were studied at two different particle size ranges; the nuclei (less than or equal to 50 nm) and accumulation (greater than 50 nm) modes. An OCC loaded with 10 g/ft3 platinum metal (OCC1) and a 20% emulsified fuel were used for this study and a notable influence on the particle size with respect to number and volume distributions was observed.
Technical Paper

Blend Ratio Optimization of Fuels Containing Gasoline Blendstock, Ethanol, and Higher Alcohols (C3-C6): Part I - Methodology and Scenario Definition

2013-04-08
2013-01-1144
The U.S. Renewable Fuel Standard (RFS2) requires an increase in the use of advanced biofuels up to 36 billion gallons by 2022. Longer chain alcohols, in addition to cellulosic ethanol and synthetic biofuels, could be used to meet this demand while adhering to the RFS2 corn-based ethanol limitation. Higher carbon number alcohols can be utilized to improve the energy content, knock resistance, and/or petroleum displacement of gasoline-alcohol blends compared to traditional ethanol blends such as E10 while maintaining desired and regulated fuel properties. Part I of this paper focuses on the development of scenarios by which to compare higher alcohol fuel blends to traditional ethanol blends. It also details the implementation of fuel property prediction methods adapted from literature. Possible combinations of eight alcohols mixed with a gasoline blendstock were calculated and the properties of the theoretical fuel blends were predicted.
Technical Paper

A Modeling Study of SCR Reaction Kinetics from Reactor Experiments

2013-04-08
2013-01-1576
In order to further characterize and optimize the performance of Selective Catalytic Reduction (SCR) aftertreatment systems used on heavy-duty diesel engines, an accurately calibrated high-fidelity multi-step global kinetic SCR model and a reduced order estimator for on-board diagnostic (OBD) and control are desirable. In this study, a Cu-zeolite SCR catalyst from a 2010 Cummins ISB engine was experimentally studied in a flow reactor using carefully designed protocols. A 2-site SCR model describing mass transfer and the SCR chemical reaction mechanisms is described in the paper. The model was calibrated to the reactor test data sets collected under temperatures from 200 to 425 °C and SCR space velocities of 60000, 90000, and 120000 hr-1. The model parameters were calibrated using an optimization code to minimize the error between measured and simulated NO, NO₂, N₂O, and NH₃ gas concentration time histories.
Technical Paper

Multivariate Regression and Generalized Linear Model Optimization in Diesel Transient Performance Calibration

2013-10-14
2013-01-2604
With stringent emission regulations, aftertreatment systems with a Diesel Particulate Filter (DPF) and a Selective Catalytic Reduction (SCR) are required for diesel engines to meet PM and NOx emissions. The adoption of aftertreatment increases the back pressure on a typical diesel engine and makes engine calibration a complicated process, requiring thousands of steady state testing points to optimize engine performance. When configuring an engine to meet Tier IV final emission regulations in the USA or corresponding Stage IV emission regulations in Europe, this high back pressure dramatically impacts transient performance. The peak NOx, smoke and exhaust temperature during a diesel engine transient cycle, such as the Non-Road Transient Cycle (NRTC) defined by the US Environmental Protection Agency (EPA), will in turn affect the performance of the aftertreatment system and the tailpipe emissions level.
Technical Paper

The Effects of Fuel Sulfur Concentration on Regulated and Unregulated Heavy-Duty Diesel Emissions

1993-03-01
930730
The effects of fuel sulfur concentration on heavy-duty diesel emissions have been studied at two EPA steady-state operating conditions, mode 9 (1900 RPM, 75% Load) and mode 11(1900 RPM, 25% Load). Data were obtained using one fuel at two sulfur levels (Low Sulfur, LS = 0.01 wt% S and Doped Low Sulfur DS = 0.29 wt% S). All tests were conducted using a Cummins LTA10-300 heavy-duty diesel engine. No significant changes were found for the nitrogen oxides (NOx), soluble organic fractions (SOF) and XAD-2 (a copolymer of styrene and divinylbenzene) organic component (XOC) due to the fuel sulfur level increase at either engine mode. The hydrocarbon (HC) levels were not significantly affected by sulfur at mode 9; however, at mode 11 the HC levels were reduced by 16%. The total particulate matter (TPM) levels increased by 17% at mode 11 and by 24% at mode 9 (both significantly different).
Technical Paper

The Effect of a Diesel Oxidation Catalyst and a Catalyzed Particulate Filter on the Emissions from a Heavy Duty Diesel Engine

2006-04-03
2006-01-0875
The objective of this research was to study the effects of a CCRT®, henceforth called Diesel Oxidation Catalyst - Catalyzed Particulate Filter (DOC-CPF) system on particulate and gaseous emissions from a heavy-duty diesel engine (HDDE) operated at Modes 11 and 9 of the old Environmental Protection Agency (EPA) 13-mode test cycle Emissions characterized included: total particulate matter (TPM) and components of carbonaceous solids (SOL), soluble organic fraction (SOF) and sulfates (SO4); vapor phase organics (XOC); gaseous emissions of total hydrocarbons (HC), carbon monoxide (CO), oxides of nitrogen (NOx), nitric oxide (NO) and nitrogen dioxide (NO2), oxygen (O2) and carbon dioxide (CO2); and particle size distributions at normal dilution ratio (NDR) and higher dilution ratio (HDR). Significant reductions were observed for TPM and SOL (>90%), SOF (>80%) and XOC (>70%) across the DOC-CPF at both modes.
Technical Paper

SAE Clean Snowmobile Challenge 2003 Summary of Results

2005-10-24
2005-01-3683
The Environmental Protection Agency (EPA) has published new emissions standards for snowmobiles, Federal Register 40 CFR, “Control of Emissions from Non-road Large Spark Ignition Engines and Recreational Engines (Marine and Land Based)”; Final Rule, Volume 67., No.217, November 8, 2002. These rules require a phase in of lower snowmobile emissions over the period of 2006 to 2012. In addition, the International Snowmobile Manufacturers' Association (ISMA) is developing new pass-by noise standards to replace the current wide-open throttle noise standard SAE J - 192 and J 1161. These new requirements set the stage for improvements in snowmobiles and form the basis for the Society of Automotive Engineers (SAE) Clean Snowmobile Challenge (CSC). SAE and Michigan Technological University (MTU) worked together, along with many other volunteers, to continue the SAE CSC, moving it from its original venue in Wyoming to Michigan.
Technical Paper

The Effects of a Catalyzed Particulate Filter and Ultra Low Sulfur Fuel on Heavy Duty Diesel Engine Emissions

2005-04-11
2005-01-0473
The objective of this research was to study the effect of a catalyzed particulate filter (CPF) with a high loading of catalyst (50 gms/ft3) and ultra low sulfur fuel (ULSF -0.57 ppm of sulfur) on the emissions from a heavy duty diesel engine. The particulate emissions were measured using two different analytical methods, i.e., the gravimetric method and the thermal optical method (TOM). The results from the two different methods of analyses were compared. The experiments were performed at four different operating conditions chosen from the old Environmental Protection Agency (EPA) 13-mode test cycle. A 1995 Cummins M11 heavy-duty engine with manually controlled exhaust gas recirculation (EGR) was used to perform the emission characterization experiments. The emission characterization included total particulate matter (TPM), which is composed of the solids (SOL), soluble organic fractions (SOF) and sulfates (SO4) analyzed using the gravimetric method.
Technical Paper

Cost Reduction Challenges and Emission Solutions in Emerging Markets for the Automotive Industry

2013-09-24
2013-01-2441
The growth of auto sales in emerging markets provides a good opportunity for automakers. Cost is a key factor for any automaker to win in an emerging market. This paper analyzes risks and opportunities in a low cost manufacturing environment. The Chinese auto market is used as an example and three categories of risks are analyzed. A typical risk assessment for cost reduction includes the analysis of environment risks, process risks and strategic risks associated with all phases of a product life. In an emerging market, emission regulations are a rapidly-evolving environment variable, since most countries with less regulated emission codes try to catch up with the newly- developed technologies to meet sustainable growth targets. Emission regulations have a huge impact on product design, manufacturing and maintenance in the automotive industry, and hence the related cost reduction must be thoroughly analyzed during risk assessment.
Technical Paper

The Effects of a Porous Ceramic Particulate Trap on the Physical, Chemical and Biological Character of Diesel Particulate Emissions

1983-02-01
830457
Physical, chemical, and biological characterization data for the particulate emissions from a Caterpillar 3208 diesel engine with and without Corning porous ceramic particulate traps are presented. Measurements made at EPA modes 3,4,5,9,lO and 11 include total hydrocarbon, oxides of nitrogen and total particulate matter emissions including the solid fraction (SOL), soluble organic fraction (SOF) and sulfate fraction (SO4), Chemical character was defined by fractionation of the SOF while biological character was defined by analysis of Ames Salmonella/ microsome bioassay data. The trap produced a wide range of total particulate reduction efficiencies (0-97%) depending on the character of the particulate. The chemical character of the SOF was significantly changed through the trap as was the biological character. The mutagenic specific activity of the SOF was generally increased through the trap but this was offset by a decrease in SOF mass emissions.
Journal Article

Development and Implementation of a Mapless, Model Based SCR Control System

2014-07-01
2014-01-9050
Various engine platforms employ Selective Catalytic Reduction (SCR) technology to reduce the tail pipe emissions of oxides of nitrogen (NOx) from diesel engines as part of an overall strategy to comply with the emission regulations in place in various countries. High levels of NOx conversion (greater than 98%) in SCR aftertreatment may provide operating margin to increase overall fuel efficiency. However, to realize the potential fuel efficiency gains, the SCR technology employed should achieve high NOx conversion with limited reductant slip over transient application cycles in addition to steady state operation. A new approach to SCR controls was developed and implemented. This approach does not rely on any maps to determine the amount of urea solution to be dosed, thus significantly reducing calibration and development time and effort when implementing the SCR technology on multiple engine platforms and applications.
Technical Paper

Plasma-Enhanced Catalytic Reduction of NOx in Simulated Lean Exhaust

2000-10-16
2000-01-2961
NOx reduction efficiency in simulated lean exhaust conditions has been examined for three proprietary catalyst materials using a non-thermal plasma discharge as a pretreatment stage to the catalyst. Using propene as the reducing agent for selective catalytic reduction, 74% reduction of NOx has been observed in the presence of 20 ppm SO2. For sulfur-free simulated exhaust, 84% NOx reduction has been obtained. Results show that the impact of sulfur on the samples examined can vary widely from virtually no effect (< 5%) to more than 20% loss in activity depending on the catalyst. Any loss due to sulfur poisoning appears to be irreversible according to limited measurements on poisoned catalysts exposed to sulfur-free exhaust streams. Catalysts were tested over a temperature range of 473-773K, with the highest activity observed at 773K. Examination of this large temperature window has shown that the optimum C1:NOx ratio changes with temperature.
Technical Paper

The Impact of Fuel Properties on Diesel Engine Emissions and a Feasible Solution for Common Calibration

2014-09-30
2014-01-2367
Fuel properties impact the engine-out emission directly. For some geographic regions where diesel engines can meet emission regulations without aftertreatment, the change of fuel properties will lead to final tailpipe emission variation. Aftertreatment systems such as Diesel Particulate Filter (DPF) and Selective Catalytic Reduction (SCR) are required for diesel engines to meet stringent regulations. These regulations include off-road Tier 4 Final emission regulations in the USA or the corresponding Stage IV emission regulations in Europe. As an engine with an aftertreatment system, the change of fuel properties will also affect the system conversion efficiency and regeneration cycle. Previous research works focus on prediction of engine-out emission, and many are based on chemical reactions. Due to the complex mixing, pyrolysis and reaction process in heterogeneous combustion, it is not cost-effective to find a general model to predict emission shifting due to fuel variation.
X