Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode. Presenter Seung-il Moon
Journal Article

Realization of Ground Effects on Snowmobile Pass-by Noise Testing

2009-05-19
2009-01-2229
Noise concerns regarding snowmobiles have increased in the recent past. Current standards, such as SAE J192 are used as guidelines for government agencies and manufacturers to regulate noise emissions for all manufactured snowmobiles. Unfortunately, the test standards available today produce results with variability that is much higher than desired. The most significant contributor to the variation in noise measurements is the test surface. The test surfaces can either be snow or grass and affects the measurement in two very distinct ways: sound propagation from the source to the receiver and the operational behavior of the snowmobile. Data is presented for a known sound pressure speaker source and different snowmobiles on various test days and test surfaces. Relationships are shown between the behavior of the sound propagation and track interaction to the ground with the pass-by noise measurements.
Journal Article

Assessment of Multiple Injection Strategies in a Direct-Injection Hydrogen Research Engine

2009-06-15
2009-01-1920
Hydrogen is widely considered a promising fuel for future transportation applications for both, internal combustion engines and fuel cells. Due to their advanced stage of development and immediate availability hydrogen combustion engines could act as a bridging technology towards a wide-spread hydrogen infrastructure. Although fuel cell vehicles are expected to surpass hydrogen combustion engine vehicles in terms of efficiency, the difference in efficiency might not be as significant as widely anticipated [1]. Hydrogen combustion engines have been shown capable of achieving efficiencies of up to 45 % [2]. One of the remaining challenges is the reduction of nitric oxide emissions while achieving peak engine efficiencies. This paper summarizes research work performed on a single-cylinder hydrogen direct injection engine at Argonne National Laboratory.
Journal Article

Measurement of Diesel Spray Formation and Combustion upon Different Nozzle Geometry using Hybrid Imaging Technique

2014-04-01
2014-01-1410
High pressure diesel sprays were visualized under vaporizing and combusting conditions in a constant-volume combustion vessel. Near-simultaneous visualization of vapor and liquid phase fuel distribution were acquired using a hybrid shadowgraph/Mie-scattering imaging setup. This imaging technique used two pulsed LED's operating in an alternative manner to provide proper light sources for both shadowgraph and Mie scattering. In addition, combustion cases under the same ambient conditions were visualized through high-speed combustion luminosity measurement. Two single-hole diesel injectors with same nozzle diameters (100μm) but different k-factors (k0 and k1.5) were tested in this study. Detailed analysis based on spray penetration rate curves, rate of injection measurements, combustion indicators and 1D model comparison have been performed.
Journal Article

Reduction of Steady-State CFD HVAC Simulations into a Fully Transient Lumped Parameter Network

2014-05-10
2014-01-9121
Since transient vehicle HVAC computational fluids (CFD) simulations take too long to solve in a production environment, the goal of this project is to automatically create a lumped-parameter flow network from a steady-state CFD that solves nearly instantaneously. The data mining algorithm k-means is implemented to automatically discover flow features and form the network (a reduced order model). The lumped-parameter network is implemented in the commercial thermal solver MuSES to then run as a fully transient simulation. Using this network a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track localized temperatures near specific objects (such as equipment in vehicles).
Journal Article

Optical Investigation of Dual-fuel CNG/Diesel Combustion Strategies to Reduce CO2 Emissions

2014-04-01
2014-01-1313
Dual-fuel combustion strategies combining a premixed charge of natural gas and a pilot injection of diesel fuel offer the potential to reduce CO2 emissions as a result of the high Hydrogen/Carbon (H/C) ratio of methane gas. Moreover, the high octane number of methane means that dual-fuel combustion strategies can be employed on compression ignition engines without the need to vary the engine compression ratio, thereby significantly reducing the cost of engine hardware modifications. The aim of this investigation is to explore the fundamental combustion phenomena occurring when methane is ignited with a pilot injection of diesel fuel. Experiments were performed on a single-cylinder optical research engine which is typical of modern, light-duty diesel engines. A high-speed digital camera recorded time-resolved combustion luminosity and an intensified CCD camera was used for single-cycle OH*chemiluminescence imaging.
Journal Article

Characterization of a Set of ECN Spray A Injectors: Nozzle to Nozzle Variations and Effect on Spray Characteristics

2013-09-08
2013-24-0037
The Engine Combustion Network (ECN) is becoming a leading group concerning the experimental and computational analysis of Engine combustion. In order to establish a coherent database for model validation, all the institutions participating to the experimental effort carry out experiments at well-defined standard conditions (in particular at Spray A conditions: 22.8kg/m3, 900K, 0% and 15% O2) and with Diesel injectors having the same specifications. Due to the rising number of ECN participants and also to unavoidable damages, additional injectors are required. This raises the question of injector's characteristics reproducibility and of the appropriate method to introduce such new injectors in the ECN network. In order to investigate this issue, a set of 8 new injectors with identical nominal Spray A specification were purchased and 4 of them were characterized using ECN standard diagnostics.
Journal Article

Buckling Analysis of Uncertain Structures Using Imprecise Probability

2015-04-14
2015-01-0485
In order to ensure the safety of a structure, adequate strength for structural elements must be provided. Moreover, catastrophic deformations such as buckling must be prevented. Using the linear finite element method, deterministic buckling analysis is completed in two main steps. First, a static analysis is performed using an arbitrary ordinate applied loading pattern. Using the obtained element axial forces, the geometric stiffness of the structure is assembled. Second, an eigenvalue problem is performed between structure's elastic and geometric stiffness matrices, yielding the structure's critical buckling loads. However, these deterministic approaches do not consider uncertainty the structure's material and geometric properties. In this work, a new method for finite element based buckling analysis of a structure with uncertainty is developed. An imprecise probability formulation is used to quantify the uncertainty present in the mechanical characteristics of the structure.
Journal Article

A Simple Method to Predict Knock Using Toluene, N-Heptane and Iso-Octane Blends (TPRF) as Gasoline Surrogates

2015-04-14
2015-01-0757
The autoignition resistance of a practical gasoline is best characterized by the Octane Index, OI, defined as RON-KS, where RON and MON are respectively, Research and Motor Octane Numbers, S is the sensitivity (RON-MON) and K is a constant depending on the pressure and temperature history of the fuel/air mixture in an engine. Experiments in knocking SI engines, HCCI engines and in premixed compression ignition (PCI) engines have shown that if two fuels of different composition have the same OI and experience the same pressure/temperature history, they will have the same autoignition phasing. A practical gasoline is a complex mixture of hydrocarbons and a simple surrogate is needed to describe its autoignition chemistry. A mixture of toluene and PRF (iso-octane + n-heptane), TPRF, can have the same RON and S as a target gasoline and so will have the same OI at any given K value and will be a very good surrogate for the gasoline.
Journal Article

Stabilization of Highly Diluted Gasoline Direct Injection Engine using Innovative Ignition Systems

2014-10-13
2014-01-2598
Dilution is a promising way to improve fuel economy of Spark-Ignited (SI) gasoline engines. In this context, influence of innovative ignition systems on the dilution acceptance of a 400cc optical GDI engine has been studied. Several systems were tested and compared to a conventional coil: a dual-coil system and two nanosecond scaled plasma generators. Two operating points were studied: 2.8bar IMEP (net) at 2000rpm and 9bar IMEP (net) at 1200rpm. Two diluents were evaluated: real EGR and air (lean combustion). High-speed imaging at frequency up to 10kHz was performed to visualize both spark and combustion initiation and propagation. Voltage and current were measured to infer the energy deposited in the spark plug gap. The dual-coil DCO™ system and the nanosecond multi-pulse plasma generator at their maximum power showed an ability to extend the dilution range of the engine.
Journal Article

On the Effects of EGR on Spark-Ignited Gasoline Combustion at High Load

2014-10-13
2014-01-2628
EGR dilution is a promising way to improve fuel economy of Spark-Ignited (SI) gasoline engines. In particular, at high load, it is very efficient in mitigating knock at low speed and to decrease exhaust temperature at high speed so that fuel enrichment can be avoided. The objective of this paper is to better understand the governing mechanisms implied in EGR-diluted SI combustion at high load. For this purpose, measurements were performed on a modern, single-cylinder GDI engine (high tumble value, multi-hole injector, central position). In addition 0-D and 1-D Chemkin simulations (reactors and flames) were used to complete the engine tests so as to gain a better understanding of the physical mechanisms. EGR benefits were confirmed and characterized at 19 bar IMEP: net ISFC could be reduced by 17% at 1200rpm and by 6% at 5000rpm. At low speed, knock mitigation was the main effect, improving the cycle efficiency by a better combustion phasing.
Journal Article

A Comparative Low Speed Pre-Ignition (LSPI) Study in Downsized SI Gasoline and CI Diesel-Methane Dual Fuel Engines

2014-10-13
2014-01-2688
Low speed pre-ignition (LSPI) in downsized spark-ignition engines has been studied for more than a decade but no definitive explanation has been found regarding the exact sources of auto-ignition. No single mechanism can explain all the occurrences of LSPI and that each engine should be considered as a particular case supporting different conditions for auto-ignition. In a different context, dual fuel Diesel-Methane engines have been more recently studied in large to medium bore compression ignition engines. However, if Dual Fuel combustion is less knock sensitive, LSPI remains one of the main limitations of low-end torque also for dual fuel engines. Indeed, in some cases, premature ignition of CNG can be observed before the Diesel pilot injection as LSPI can classically be observed before the spark in gasoline engines. This article aims at highlighting the similarities and discrepancies between LSPI phenomena in SI gasoline and dual fuel engines.
Technical Paper

Performance Analysis and In-Cylinder Visualization of Conventional Diesel and Isobaric Combustion in an Optical Diesel Engine

2021-09-05
2021-24-0040
Compared to conventional diesel combustion (CDC), isobaric combustion can achieve a similar or higher indicated efficiency, lower heat transfer losses, reduced nitrogen oxides (NOx) emissions; however, with a penalty of soot emissions. While the engine performance and exhaust emissions of isobaric combustion are well known, the overall flame development, in particular, the flow-field details within the flames are unclear. In this study, the performance analysis of CDC and two isobaric combustion cases was conducted, followed by high-speed imaging of Mie-scattering and soot luminosity in an optically accessible, single-cylinder heavy-duty diesel engine. From the soot luminosity imaging, qualitative flow-fields were obtained using flame image velocimetry (FIV). The peak motoring pressure (PMP) and peak cylinder pressure (PCP) of CDC are kept fixed at 50 and 70 bar, respectively.
Technical Paper

Flow-Field Analysis of Isobaric Combustion Using Multiple Injectors in an Optical Accessible Diesel Engine

2021-09-05
2021-24-0042
Isobaric combustion has shown the potential of improving engine efficiency by lowering the heat transfer losses. Previous studies have achieved isobaric combustion through multiple injections from a single central injector, controlling injection timing and duration of the injection. In this study, we employed three injectors, i.e. one centrally mounted (C) on the cylinder head and two side-injectors (S), slant-mounted on cylinder head protruding their nozzle tip near piston-bowl to achieve the isobaric combustion. This study visualized the flame development of isobaric combustion, linking flow-field details to the observed trends in engine efficiency and soot emissions. The experiments were conducted in an optically accessible single-cylinder heavy-duty diesel engine using n-heptane as fuel. Isobaric combustion, with a 50 bar peak pressure, was achieved with three different injection strategies, i.e. (C+S), (S+C), and (S+S).
Technical Paper

Computational Investigation of the Effects of Injection Strategy and Rail Pressure on Isobaric Combustion in an Optical Compression Ignition Engine

2021-09-05
2021-24-0023
The high-pressure isobaric combustion has been proposed as the most suitable combustion mode for the double compre4ssion expansion engine (DCEE) concept. Previous experimental and simulation studies have demonstrated an improved efficiency compared to the conventional diesel combustion (CDC) engine. In the current study, isobaric combustion was achieved using a single injector with multiple injections. Since this concept involves complex phenomena such as spray to spray interactions, the computational models were extensively validated against the optical engine experiment data, to ensure high-fidelity simulations. The considered optical diagnostic techniques are Mie-scattering, fuel tracer planar laser-induced fluorescence (PLIF), and natural flame luminosity imaging. Overall, a good agreement between the numerical and experimental results was obtained.
Technical Paper

Effect of Battery Temperature on Fuel Economy and Battery Aging When Using the Equivalent Consumption Minimization Strategy for Hybrid Electric Vehicles

2020-04-14
2020-01-1188
Battery temperature variations have a strong effect on both battery aging and battery performance. Significant temperature variations will lead to different battery behaviors. This influences the performance of the Hybrid Electric Vehicle (HEV) energy management strategies. This paper investigates how variations in battery temperature will affect Lithium-ion battery aging and fuel economy of a HEV. The investigated energy management strategy used in this paper is the Equivalent Consumption Minimization Strategy (ECMS) which is a well-known energy management strategy for HEVs. The studied vehicle is a Honda Civic Hybrid and the studied battery, a BLS LiFePO4 3.2Volts 100Ah Electric Vehicle battery cell. Vehicle simulations were done with a validated vehicle model using multiple combinations of highway and city drive cycles. The battery temperature variation is studied with regards to outside air temperature.
Technical Paper

Probing Spark Discharge Behavior in High-speed Cross-flows through Modeling and Experimentation

2020-04-14
2020-01-1120
This paper presents a combined numerical and experimental investigation of the characteristics of spark discharge in a spark-ignition engine. The main objective of this work is to gain insights into the spark discharge process and early flame kernel development. Experiments were conducted in an inert medium within an optically accessible constant-volume combustion vessel. The cross-flow motion in the vessel was generated using a previously developed shrouded fan. Numerical modeling was based on an existing discharge model in the literature developed by Kim and Anderson. However, this model is applicable to a limited range of gas pressures and flow fields. Therefore, the original model was evaluated and improved to predict the behavior of spark discharge at pressurized conditions up to 45 bar and high-speed cross-flows up to 32 m/s. To accomplish this goal, a parametric study on the spark channel resistance was conducted.
Technical Paper

An Analytical Energy-budget Model for Diesel Droplet Impingement on an Inclined Solid Wall

2020-04-14
2020-01-1158
The study of spray-wall interaction is of great importance to understand the dynamics that occur during fuel impingement onto the chamber wall or piston surfaces in internal combustion engines. It is found that the maximum spreading length of an impinged droplet can provide a quantitative estimation of heat transfer and energy transformation for spray-wall interaction. Furthermore, it influences the air-fuel mixing and hydrocarbon and particle emissions at combusting conditions. In this paper, an analytical model of a single diesel droplet impinging on the wall with different inclined angles (α) is developed in terms of βm (dimensionless maximum spreading length, the ratio of maximum spreading length to initial droplet diameter) to understand the detailed impinging dynamic process.
Technical Paper

Simultaneous Negative PLIF and OH* Chemiluminescence Imaging of the Gas Exchange and Flame Jet from a Narrow Throat Pre-Chamber

2020-09-15
2020-01-2080
Pre-chamber combustion (PCC) is a promising engine combustion concept capable of extending the lean limit at part load. The engine experiments in the literature showed that the PCC could achieve higher engine thermal efficiency and much lower NOx emission than the spark-ignition engine. Improved understanding of the detailed flow and combustion physics of PCC is important for optimizing the PCC combustion. In this study, we investigated the gas exchange and flame jet from a narrow throat pre-chamber (PC) by only fueling the PC with methane in an optical engine. Simultaneous negative acetone planar laser-induced fluorescence (PLIF) imaging and OH* chemiluminescence imaging were applied to visualize the PC jet and flame jet from the PC, respectively. Results indicate a delay of the PC gas exchange relative to the built-up of the pressure difference (△ P) between PC and the main chamber (MC). This should be due to the gas inertia inside the PC and the resistance of the PC nozzle.
Technical Paper

High-Speed Imaging of Main-Chamber Combustion of a Narrow Throat Pre-Chamber under Lean Conditions

2020-09-15
2020-01-2081
Pre-chamber combustion (PCC) allows an extension on the lean limit of an internal combustion engine (ICE). This combustion mode provides lower NOx emissions and shorter combustion durations that lead to a higher indicated efficiency. In the present work, a narrow throat pre-chamber was tested, which has a unique nozzle area distribution in two rows of six nozzle holes each. Tests were carried out in a modified heavy-duty engine for optical visualization. Methane was used as fuel for both the pre-chamber and the main chamber. Seven operating points were tested, including passive pre-chamber mode as a limit condition, to study the effect of pre- and main-chamber fuel addition on the pre-chamber jets and the main chamber combustion via chemiluminescence imaging. A typical cycle of one of the tested conditions is explained through the captured images. Observations of the typical cycle reveal a predominant presence of only six jets (from the lower row), with well-defined jet structures.
X