Refine Your Search

Topic

Search Results

Journal Article

The Impact of Spark Discharge Pattern on Flame Initiation in a Turbulent Lean and Dilute Mixture in a Pressurized Combustion Vessel

2013-04-08
2013-01-1627
An operational scheme with fuel-lean and exhaust gas dilution in spark-ignited engines increases thermal efficiency and decreases NOx emission, while these operations inherently induce combustion instability and thus large cycle-to-cycle variation in engine. In order to stabilize combustion variations, the development of an advanced ignition system is becoming critical. To quantify the impact of spark-ignition discharge, ignitability tests were conducted in an optically accessible combustion vessel to characterize the flame kernel development of lean methane-air mixture with CO₂ simulating exhaust diluent. A shrouded fan was used to generate turbulence in the vicinity of J-gap spark plug and a Variable Output Ignition System (VOIS) capable of producing a varied set of spark discharge patterns was developed and used as an ignition source. The main feature of the VOIS is to vary the secondary current during glow discharge including naturally decaying and truncated with multiple strikes.
Technical Paper

Probing Spark Discharge Behavior in High-speed Cross-flows through Modeling and Experimentation

2020-04-14
2020-01-1120
This paper presents a combined numerical and experimental investigation of the characteristics of spark discharge in a spark-ignition engine. The main objective of this work is to gain insights into the spark discharge process and early flame kernel development. Experiments were conducted in an inert medium within an optically accessible constant-volume combustion vessel. The cross-flow motion in the vessel was generated using a previously developed shrouded fan. Numerical modeling was based on an existing discharge model in the literature developed by Kim and Anderson. However, this model is applicable to a limited range of gas pressures and flow fields. Therefore, the original model was evaluated and improved to predict the behavior of spark discharge at pressurized conditions up to 45 bar and high-speed cross-flows up to 32 m/s. To accomplish this goal, a parametric study on the spark channel resistance was conducted.
Journal Article

Investigation of Impacts of Spark Plug Orientation on Early Flame Development and Combustion in a DI Optical Engine

2017-03-28
2017-01-0680
The influence of spark plug orientation on early flame kernel development is investigated in an optically accessible gasoline direct injection homogeneous charged spark ignition engine. This investigation provides visual understanding and statistical characterization of how spark plug orientation impacts the early flame kernel and thus combustion phasing and engine performance. The projected images of flame kernel were captured through natural flame chemiluminescence with a high-speed camera at 10,000 frames per second, and the ignition secondary discharge voltage and current were measured with a 10 MHz DAQ system. The combustion metrics were determined using measurement from a piezo-electric in-cylinder pressure transducer and real-time engine combustion analyzer. Three spark plug orientations with two different electrode designs were studied. The captured images of the flame were processed to yield 2D and 1D probability distributions.
Journal Article

Ionization Signal Response during Combustion Knock and Comparison to Cylinder Pressure for SI Engines

2008-04-14
2008-01-0981
In-cylinder ion sensing is a subject of interest due to its application in spark-ignited (SI) engines for feedback control and diagnostics including: combustion knock detection, rate and phasing of combustion, and mis-fire On Board Diagnostics (OBD). Further advancement and application is likely to continue as the result of the availability of ignition coils with integrated ion sensing circuitry making ion sensing more versatile and cost effective. In SI engines, combustion knock is controlled through closed loop feedback from sensor metrics to maintain knock near the borderline, below engine damage and NVH thresholds. Combustion knock is one of the critical applications for ion sensing in SI engines and improvement in knock detection offers the potential for increased thermal efficiency. This work analyzes and characterizes the ionization signal in reference to the cylinder pressure signal under knocking and non-knocking conditions.
Journal Article

Measurement of r-values of High Strength Steels Using Digital Image Correlation

2011-04-12
2011-01-0234
The r-value is a very important parameter in the forming simulations of high strength steels, especially for steels with prominent anisotropy. R-values for sheet steels conventionally measured by extensometers were found neither consistent nor accurate due to difficulties in measuring the width strain. In this study, the Digital Image Correlation (DIC) technique was applied to determine r-values in Longitudinal (L), Transverse (T) and Diagonal (D) directions for cold rolled DP980 GI, DP780 GI, DP600 GI and BH250 GI sheet steels. The r-values measured from DIC were validated by finite element analysis (FEA) of a uniaxial tensile test for BH250. The simulation results of the load-displacement for two plasticity models were compared to experimental data, with one being the isotropic yield (von-Mises) and the other being an anisotropic model (Hill-48) using the r-value measured from DIC.
Journal Article

A New Approach for Very Low Particulate Mass Emissions Measurement

2013-04-08
2013-01-1557
Pending reductions in light duty vehicle PM emissions standards from 10 to 3 mg/mi and below will push the limits of the gravimetric measurement method. At these levels the PM mass collected approaches the mass of non-particle gaseous species that adsorb onto the filter from exhaust and ambient air. This introduces an intrinsic lower limit to filter based measurement that is independent of improvements achieved in weighing metrology. The statistical variability of back-up filter measurements at these levels makes them an ineffective means for correcting the adsorption artifact. The proposed subtraction of a facility based estimate of the artifact will partially alleviate the mass bias from adsorption, but its impact on weighing variability remains a problem that can reach a significant fraction of the upcoming 3 and future 1 mg/mi standards. This paper proposes an improved PM mass method that combines the gravimetric filter approach with real time aerosol measurement.
Technical Paper

Refining Vibration Quality - A Study Characterizing Vehicle/Operator Interface Vibration on Snowmobiles and ATVs

2007-05-15
2007-01-2389
Sensory jury testing was utilized to characterize vibration levels perceived by the operator, with respect to levels measured using instrumentation, in order to develop a tool for the evaluation of vibration at the operator interfaces. Details of the jury testing and jury data processing method are highlighted as well as the refinement of vibration characterization for a specific application. The vibration at user interface locations of both snowmobiles and ATVs was measured along with subjective feedback from a panel of jurists. Statistical analysis was performed on the jury data to provide both a qualitative and quantitative number to represent the opinion of the jury. Correlations were developed between the measured levels of vibration and the opinions of the jury. Finally, a set of correlation functions suitable for design predictions was developed.
Technical Paper

Complementary Intersection Method (CIM) for System Reliability Analysis

2007-04-16
2007-01-0558
Researchers desire to evaluate system reliability uniquely and efficiently. Despite its strong technical demand, little progress has been made on system reliability analysis in the last two decades. Up to now, bound methods for system reliability prediction have been dominant. For system reliability bounds, the second order bound method gives fairly accurate prediction for system reliability assuming that the probabilities of second-order joint events are accurately obtained. Two primary challenges in system reliability analysis are evaluation of the probabilities of second-order joint events and no unique system reliability for design optimization. Firstly, the greatest technical demand is found in an accurate and efficient method to numerically evaluate the probability of a second-order joint event.
Technical Paper

Innovative Six Sigma Design Using the Eigenvector Dimension-Reduction (EDR) Method

2007-04-16
2007-01-0799
This paper presents an innovative approach for quality engineering using the Eigenvector Dimension Reduction (EDR) Method. Currently industry relies heavily upon the use of the Taguchi method and Signal to Noise (S/N) ratios as quality indices. However, some disadvantages of the Taguchi method exist such as, its reliance upon samples occurring at specified levels, results to be valid at only the current design point, and its expensiveness to maintain a certain level of confidence. Recently, it has been shown that the EDR method can accurately provide an analysis of variance, similar to that of the Taguchi method, but is not hindered by the aforementioned drawbacks of the Taguchi method. This is evident because the EDR method is based upon fundamental statistics, where the statistical information for each design parameter is used to estimate the uncertainty propagation through engineering systems.
Technical Paper

Correlation of Air Fuel Ratio with Ionization Signal Metrics in a Multicylinder Spark Ignited Engine

2009-04-20
2009-01-0584
Accurate individual cylinder Air Fuel Ratio (AFR) feedback provide opportunities for improved engine performance and reduced emissions in spark ignition engines. One potential measurement for individual cylinder AFR is in-cylinder ionization measured by employing the spark plug as a sensor. A number of previous investigations have studied correlations of the ionization signal with AFR and shown promising results. However the studies have typically been limited to single cylinders under restricted operating conditions. This investigation analyzes and characterizes the ionization signals in correlation to individual AFR values obtained from wide-band electrochemical oxygen sensors located in the exhaust runners of each cylinder. Experimental studies for this research were conducted on a 2.0L inline 4 cylinder spark ignited engine with dual independent variable cam phasing and an intake charge motion control valve.
Technical Paper

The Effects of Different Input Excitation on the Dynamic Characterization of an Automotive Shock Absorber

2001-04-30
2001-01-1442
This paper deals with the dynamic characterization of an automotive shock absorber, a continuation of an earlier work [1]. The objective of this on-going research is to develop a testing and analysis methodology for obtaining dynamic properties of automotive shock absorbers for use in CAE-NVH low-to-mid frequency chassis models. First, the effects of temperature and nominal length on the stiffness and damping of the shock absorber are studied and their importance in the development of a standard test method discussed. The effects of different types of input excitation on the dynamic properties of the shock absorber are then examined. Stepped sine sweep excitation is currently used in industry to obtain shock absorber parameters along with their frequency and amplitude dependence. Sine-on-sine testing, which involves excitation using two different sine waves has been done in this study to understand the effects of the presence of multiple sine waves on the estimated dynamic properties.
Technical Paper

Establishing Localized Fire Test Methods and Progressing Safety Standards for FCVs and Hydrogen Vehicles

2011-04-12
2011-01-0251
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 11 years. In the past couple of years, significant attention has been directed toward a revision to the standard for vehicular hydrogen systems, SAE J2579(1). In addition to streamlining test methodologies for verification of Compressed Hydrogen Storage Systems (CHSSs) as discussed last year,(2) the working group has been considering the effect of vehicle fires, with the major focus on a small or localized fire that could damage the container in the CHSS and allow a burst before the Pressure Relief Device (PRD) can activate and safely vent the compressed hydrogen stored from the container.
Technical Paper

Impact of Ignition Energy Phasing and Spark Gap on Combustion in a Homogenous Direct Injection Gasoline SI Engine Near the EGR Limit

2013-04-08
2013-01-1630
For spark-ignition gasoline engines operating under the wide speed and load conditions required for light duty vehicles, ignition quality limits the ability to minimize fuel consumption and NOx emissions via dilution under light and part load conditions. In addition, during transients including tip-outs, high levels of dilution can occur for multiple combustion events before either the external exhaust gas can be adjusted and cleared from the intake or cam phasing can be adjusted for correct internal dilution. Further improvement and a thorough understanding of the impact of the ignition system on combustion near the dilution limit will enable reduced fuel consumption and robust transient operation. To determine and isolate the effects of multiple parameters, a variable output ignition system (VOIS) was developed and tested on a 3.5L turbocharged V6 homogeneous charge direct-injection gasoline engine with two spark plug gaps and three ignition settings.
Technical Paper

Development of Multiple Injection Strategy for Gasoline Compression Ignition High Performance and Low Emissions in a Light Duty Engine

2022-03-29
2022-01-0457
The increase in regulatory demand to reduce CO2 emissions resulted in a focus on the development of novel combustion modes such as gasoline compression ignition (GCI). It has been shown by others that GCI can improve the overall engine efficiency while achieving soot and NOx emissions targets. In comparison with diesel fuel, gasoline has a higher volatility and has more resistance to autoignition, therefore, it has a longer ignition delay time which facilitates better mixing of the air-fuel charge before ignition. In this study, a GCI combustion system has been tested using a 2.2L compression ignition engine as part of a US Department of Energy funded project. For this purpose, a multiple injection strategy was developed to improve the pressure rise rates and soot emission levels for the same engine out NOx emissions.
Technical Paper

Computer-Aided Engineering Modeling and Automation on High-Performance Computing

2022-06-27
2022-01-5051
The computer-aided engineering (CAE) automation study requires a large disk space and a premium processor. If all finite element (FE) models run locally, it may crash the local machine, and if the FE model runs on high-performance computing (HPC), transferring data from the server to the local machine to do the optimization may cause latency issues. This automation study provides a unique road map to optimize the design by working efficiently using the initial setup on the local machine, running an analysis of a large number of FE models on HPC, and performing optimization on the server. CAE Automation process has been demonstrated using a case study on a driveline component, crush spacer. Crush spacer is a very critical engineering design because, first, it provides the minimum required preload to the bearing inner races to keep them in position and, second, it endures a number of duty cycles.
Technical Paper

Effects of Pore Distributions on Ductility of Thin-Walled High Pressure Die-Cast Magnesium

2013-04-08
2013-01-0644
In this paper, a microstructure-based three-dimensional (3D) finite element modeling method is adopted to investigate the effects of porosity in thin-walled high pressure die-cast (HPDC) magnesium alloys on their ductility. For this purpose, the cross-sections of AM60 casting samples are first examined using optical microscope and X-ray tomography to obtain the general information on the pore distribution features. The experimentally observed pore distribution features are then used to generate a series of synthetic microstructure-based 3D finite element models with different pore volume fractions and pore distribution features. Shear and ductile damage models are adopted in the finite element analyses to induce the fracture by element removal, leading to the prediction of ductility.
Technical Paper

A Variable Displacement Engine with Independently Controllable Stroke Length and Compression Ratio

2006-04-03
2006-01-0741
A variable displacement engine with the capability to vary stroke length and compression ratio independent of one another has been designed, prototyped, and successfully operated. Reasons for investigation of such an engine are the potential for improvement in fuel economy and/or performance. Literature has shown that engines with variable compression ratio can significantly decrease specific fuel consumption. Engines with variability in stroke length can maintain peak efficiency running conditions by adjusting power output through displacement change verses through the efficiency detriment of throttling. The project began with the synthesis of a planar 2-dimensional rigid body mechanism. Various synthesis techniques were employed and design took place with a collection of computer software. MATLAB code performed much of the synthesis, kinematic, and dynamic analysis.
Technical Paper

Ford “S” Frame

1969-02-01
690004
Since statistics indicate that front impact is the major accident type, Ford has been studying energy-absorbing structures for some time. Early designs such as the “ball and tube” and “rail splitter” were discarded in favor of the “S” frame. Details of the design approach and testing are given in this paper. Design objectives were increased effective collapse distance, compatibility with production practices, and maintenance of satisfactory noise, vibration, and harshness levels. Safety objectives are improved passenger compartment integrity and reduction of seat belt loads. Barrier crash tests at 30 mph (equivalent to collision into standing vehicle at 50 mph) were used to evaluate the design of the “S” frame. Results of testing indicate that occupant restraint with seat belts, combined with front end structural improvements, offer the most promise for injury reduction during service front impact accidents.
Technical Paper

Effectiveness of Polyurethane Foam in Energy Absorbing Structures

1982-02-01
820494
Future vehicle safety, performance and fuel economy objectives make the development of new materials, concepts and methods of crash energy management desirable. The technique of foam filling structural rails for increased energy absorption was investigated as one such concept. A fractional factorial test program was established to evaluate the weight effectiveness of polyurethane foam as an energy absorber and stabilizer. The experiment provided the quantitative effects of design parameter, varability of results and statistical significance of each parameter with regard to crash characteristics. High density foam was found to be weight effective as a structural reinforcement, but not as an energy absorber. Medium density foam improves the energy absorption of a section. Equivalent energy, however, can be absorbed more weight effectively by changing the metal thickness or the section size.
Technical Paper

Design and Optimization of Steering Assembly for Baja ATV Vehicle

2023-04-11
2023-01-0161
The steering assembly is a part of an automotive suspension system that provides control and stability. It provides control of direction, stability, and control over placement of the car. Optimization of the vehicle in weight results in enhanced performance and low fuel consumption, more so for an all-terrain race car. Optimization in this paper loosely refers to weight reduction and achieving the optimum stiffness to weight ratio of each component. This research encompasses various aspects linked to conceptualizing, designing, analysing, optimizing, and finally manufacturing the steering sub-system. Analytical calculations for mechanical design were performed using data from various experiments and jigs. CAD was developed using SolidWorks, and various analyses were performed using Altair HyperWorks. Finite Element Analysis (FEA) was primarily used to build stress plots and locate weak spots aiding optimization.
X