Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

High Frequency Gear Whine Control by Driveshaft Design Optimization

2003-05-05
2003-01-1478
Generation mechanism of transmission gear whine varies significantly by gear position, frequency and path/amplifier of the total system. Although controlling the source, namely transmission error/dynamic meshing force of the gears is desirable; it is not always feasible as well as most effective. This paper describes the root cause analyses of high frequency gear whine (overdrive position) of commercial vehicle, which combined in-depth experimental and CAE analyses. The generation mechanism of the gear whine is clarified efficiently utilizing Ford Spin-Torsional AWD NVH Test Facility, state-of-the-art Powertrain NVH development test cell, combining vehicle and sub-system NVH measurement. The analyses results showed the O/D gear whine is driveshaft airborne, due to alignment of driveshaft higher bending resonance to air-borne mode (“breathing mode”).
Technical Paper

Reducing High Frequency Driveshaft Radiated Noise by Polymer Liners

2005-11-01
2005-01-3554
In automotive industry inserting cardboard liners or foam in the dirveshaft to prevent them from functioning as a path or amplifier to high frequency gear whine excitation is a common practice. Due to limited damping capability, these liners, however, have limited effectiveness and may not prevent or effectively reduce the shaft radiated noise. This paper addresses the feasibility and performance of polymers as an alternative lining material and technique. Through experimental investigations it has been shown that the polymer liners in reducing the driveshaft radiated noise are more effective than the cardboard liners.
X