Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The Ford Motor Company Spin-Torsional NVH Test Facility-2

2003-05-05
2003-01-1684
The Ford Spin Torsional NVH TEST Facility developed and completed in 1999 as a state-of-the-art powertrain NVH development facility(1). Since then, various designed capabilities have been verified with test vehicles for multiple applications to facilitate powertrain NVH development. This paper describes fundamental capabilities of the test facility, including input module to simulate engine torque signatures of arbitrary engines (“virtual engine” capability) and absorbing dynamometer systems, functioning as a precision 4WD/AWD chassis dynamometer. The correlation between road test/chassis dynamometer test and Spin-Torsional test is then illustrated, verifying high correlation of vehicle/sub-system responses between conventional vehicle testing and Spin-Torsional test results.
Technical Paper

High Frequency Gear Whine Control by Driveshaft Design Optimization

2003-05-05
2003-01-1478
Generation mechanism of transmission gear whine varies significantly by gear position, frequency and path/amplifier of the total system. Although controlling the source, namely transmission error/dynamic meshing force of the gears is desirable; it is not always feasible as well as most effective. This paper describes the root cause analyses of high frequency gear whine (overdrive position) of commercial vehicle, which combined in-depth experimental and CAE analyses. The generation mechanism of the gear whine is clarified efficiently utilizing Ford Spin-Torsional AWD NVH Test Facility, state-of-the-art Powertrain NVH development test cell, combining vehicle and sub-system NVH measurement. The analyses results showed the O/D gear whine is driveshaft airborne, due to alignment of driveshaft higher bending resonance to air-borne mode (“breathing mode”).
Technical Paper

Control of Powertrain Noise Using a Frequency Domain Filtered-x LMS Algorithm

2009-05-19
2009-01-2145
An enhanced, frequency domain filtered-x least mean square (LMS) algorithm is proposed as the basis for an active control system for treating powertrain noise. There are primarily three advantages of this approach: (i) saving of computing time especially for long controller’s filter length; (ii) more accurate estimation of the gradient due to the sample averaging of the whole data block; and (iii) capacity for rapid convergence when the adaptation parameter is correctly adjusted for each frequency bin. Unlike traditional active noise control techniques for suppressing response, the proposed frequency domain FXLMS algorithm is targeted at tuning vehicle interior response in order to achieve a desirable sound quality. The proposed control algorithm is studied numerically by applying the analysis to treat vehicle interior noise represented by either measured or predicted cavity acoustic transfer functions.
X