Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Sound Quality Metric Development for Wind Buffeting and Gusting Noise

2003-05-05
2003-01-1509
Customer annoyance of steady-state wind noise correlates well with loudness. A common objective metric to capture average loudness is the ISO532B or Zwicker method. However, it has been shown previously that time-varying wind noise can also significantly affect customer annoyance, independent of average loudness. Causes of time-varying wind noise include wind buffeting generated by other vehicles, and also wind gusting. This paper summarizes the development of an objective metric that correlates well with subjective impressions of wind gusting/buffeting. The model is based on a general impulsive noise model with parameters tuned specifically for time-varying wind characteristics. The model consists of a psychoacoustic processing stage followed by a gusting detection stage, where the psychoacoustic stage is extracted from a time-varying loudness model. The output of the gusting model is a time series that indicates the location and “intensity” of wind gusts.
Technical Paper

Subjective Quantification of Wind Buffeting Noise

1999-05-17
1999-01-1821
It is well known that customer perception of the annoyance of steady-state wind noise can be fairly well characterized by calculating the loudness of such sounds. Commonly used is the ISO532B or Zwicker method [1]. What is not known, however, is how a customer would react to time-varying wind noise. Such situations can occur when a vehicle experiences cross-wind conditions on the highway. Turbulent air flow generated by either a passing vehicle or when traveling in the wake of another vehicle can cause the wind noise to take on time-varying characteristics. The time-varying wind noise created by such situations is commonly referred to as “buffeting.” Customer complaint field data indicates that wind buffeting is a source of annoyance, but the level of the effect has never been quantified. In this study, binaural sounds were recorded inside an aeroacoustic wind tunnel. Varying degrees of buffeting were simulated using a “blocker” vehicle situated in front of the test vehicle.
X