Refine Your Search

Topic

Author

Search Results

Video

GreenZone Driving for Plug In Hybrid Electric Vehicles

2012-05-29
Impact of driving patterns on fuel economy is significant in hybrid electric vehicles (HEVs). Driving patterns affect propulsion and braking power requirement of vehicles, and they play an essential role in HEV design and control optimization. Driving pattern conscious adaptive strategy can lead to further fuel economy improvement under real-world driving. This paper proposes a real-time driving pattern recognition algorithm for supervisory control under real-world conditions. The proposed algorithm uses reference real-world driving patterns parameterized from a set of representative driving cycles. The reference cycle set consists of five synthetic representative cycles following the real-world driving distance distribution in the US Midwestern region. Then, statistical approaches are used to develop pattern recognition algorithm. Driving patterns are characterized with four parameters evaluated from the driving cycle velocity profiles.
Journal Article

Enabling Flex Fuel Vehicle Emissions Testing – Test Cell Modifications and Data Improvements

2009-04-20
2009-01-1523
The challenges of flex-fuel vehicle (FFV) emissions measurements have recently come to the forefront for the emissions testing community. The proliferation of ethanol blended gasoline in fractions as high as 85% has placed a new challenge in the path of accurate measures of NMHC and NMOG emissions. Test methods need modification to cope with excess amounts of water in the exhaust, assure transfer and capture of oxygenated compounds to integrated measurement systems (impinger and cartridge measurements) and provide modal emission rates of oxygenated species. Current test methods fall short of addressing these challenges. This presentation will discuss the challenges to FFV testing, modifications made to Ford Motor Company’s Vehicle Emissions Research Laboratory test cells, and demonstrate the improvements in recovery of oxygenated species from the vehicle exhaust system for both regulatory measurements and development measurements.
Journal Article

A New Responsive Model for Educational Programs for Industry: The University of Detroit Mercy Advanced Electric Vehicle Graduate Certificate Program

2010-10-19
2010-01-2303
Today's automotive and electronics technologies are evolving so rapidly that educators and industry are both challenged to re-educate the technological workforce in the new area before they are replaced with yet another generation. In early November 2009 Ford's Product Development senior management formally approved a proposal by the University of Detroit Mercy to transform 125 of Ford's “IC Engine Automotive Engineers” into “Advanced Electric Vehicle Automotive Engineers.” Two months later, the first course of the Advanced Electric Vehicle Program began in Dearborn. UDM's response to Ford's needs (and those of other OEM's and suppliers) was not only at the rate of “academic light speed,” but it involved direct collaboration of Ford's electric vehicle leaders and subject matter experts and the UDM AEV Program faculty.
Journal Article

A Novel Approach to Create Dimensional Tolerance Requirements from Expert Knowledge

2017-03-28
2017-01-0241
Geometric Dimensioning and Tolerancing is used to describe the allowed feature variations regarding the product design. Tolerance specification is important in many stages of all phases on product development. The product development engineering need to define the symbols to use on the Feature Control Frame of every component. Since the component function has an increment on its complexity year over year, it is not trivial to define those symbols anymore. The determination of dimensional tolerance shall be preceded by careful specification of the types of tolerance and symbols that will be applied in controlled features. Poor tolerance specifications can increase the production cost, require late product changes or lead to legal issues.
Journal Article

Data Driven Calibration Approach

2017-03-28
2017-01-0607
Designing a control system that can robustly detect faulted emission control devices under all environmental and driving conditions is a challenging task for OEMs. In order to gain confidence in the control strategy and the values of tunable parameters, the test vehicles need to be subjected to their limits during the development process. Complexity of modern powertrain systems along with the On-Board Diagnostic (OBD) monitors with multidimensional thresholds make it difficult to anticipate all the possible scenarios. Finding optimal solutions to these problems using traditional calibration processes can be time and resource intensive. A possible solution is to take a data driven calibration approach. In this method, a large amount of data is collected by collaboration of different groups working on the same powertrain. Later, the data is mined to find the optimum values of tunable parameters for the respective vehicle functions.
Journal Article

Multidisciplinary Optimization of Auto-Body Lightweight Design Using Hybrid Metamodeling Technique and Particle Swarm Optimizer

2018-04-03
2018-01-0583
Because of rising complexity during the automotive product development process, the number of disciplines to be concerned has been significantly increased. Multidisciplinary design optimization (MDO) methodology, which provides an opportunity to integrate each discipline and conduct compromise searching process, is investigated and introduced to achieve the best compromise solution for the automotive industry. To make a better application of MDO, the suitable coupling strategy of different disciplines and efficient optimization techniques for automotive design are studied in this article. Firstly, considering the characteristics of automotive load cases which include many shared variables but rare coupling variables, a multilevel MDO coupling strategy based on enhanced collaborative optimization (ECO) is studied to improve the computational efficiency of MDO problems.
Journal Article

Systems Engineering Approach for Voice Recognition in the Car

2017-03-28
2017-01-1599
In this paper, a systems engineering approach is explored to evaluate the effect of design parameters that contribute to the performance of the embedded Automatic Speech Recognition (ASR) engine in a vehicle. This includes vehicle designs that influence the presence of environmental and HVAC noise, microphone placement strategy, seat position, and cabin material and geometry. Interactions can be analyzed between these factors and dominant influencers identified. Relationships can then be established between ASR engine performance and attribute performance metrics that quantify the link between the two. This helps aid proper target setting and hardware selection to meet the customer satisfaction goals for both teams.
Technical Paper

Evaluating Statistical Error in Unsteady Automotive Computational Fluid Dynamics Simulations

2020-04-14
2020-01-0692
Among the many sources of uncertainty in an unsteady computational fluid dynamics (CFD) simulation, the statistical uncertainty in the mean value of a fluctuating quantity (for example, the drag coefficient) is of practical importance for vehicle design and development. This uncertainty can be reduced by extending the simulation run length, however, this increases the computational cost and leads to longer turnaround times. Moreover, it is desirable to be able to run an unsteady CFD simulation for the minimum amount of time necessary to reach an acceptable amount of uncertainty in the quantity of interest. This work assesses several methods for calculating the uncertainty in the mean of an unsteady signal. Simulated noise is used to validate the methods, and evaluation is carried out using signals from CFD simulations of realistic vehicle geometries. Calculating the uncertainty in the difference between two signals is also discussed.
Journal Article

Control System Development for the Dual Drive Hybrid System

2009-04-20
2009-01-0231
Automotive manufacturers continue to move further toward powertrain electrification. There are already many hybrid electric vehicles on the market that are based on a variety of system architectures. Ford Motor Company has investigated a new Dual Drive configuration that promises to overcome some of the attribute deficiencies associated with current architectures. The primary objective of this development project was to demonstrate the fuel economy potential of this system in a vehicle. To accomplish this objective, the team used an internally developed, formal Controls Development Process (CDP) for the control system design and validation. This paper describes the development of the vehicle control system in the context of this process.
Journal Article

Parameter Design Based FEA Correlation Studies on Automotive Seat Structures

2008-04-14
2008-01-0241
In recent years, the design of automotive components and assemblies have resulted in an over-reliance on advanced CAE tools especially the Finite Element Analysis. An emphasis on cost reduction and commonization of components in automotive industry has made it necessary to use the CAE tools in innovative ways. Use of FEA as a effective product development tool can be greatly enhanced if it provides a high degree of correlation with physical tests, thereby greatly limiting the investment in expensive prototypes and testing. This paper will discuss a robustness based methodology to realize effective correlation of finite element models with actual physical tests on automotive seat structure assembly, at a component, sub-system, and systems level. Based on a parameter design approach, the various factors that affect the degree of correlation between CAE models and physical tests will be described.
Journal Article

Model-Based Estimation and Control System Development in a Urea-SCR Aftertreatment System

2008-04-14
2008-01-1324
In this paper, a model-based linear estimator and a non-linear control law for an Fe-zeolite urea-selective catalytic reduction (SCR) catalyst for heavy duty diesel engine applications is presented. The novel aspect of this work is that the relevant species, NO, NO2 and NH3 are estimated and controlled independently. The ability to target NH3 slip is important not only to minimize urea consumption, but also to reduce this unregulated emission. Being able to discriminate between NO and NO2 is important for two reasons. First, recent Fe-zeolite catalyst studies suggest that NOx reduction is highly favored by the NO 2 based reactions. Second, NO2 is more toxic than NO to both the environment and human health. The estimator and control law are based on a 4-state model of the urea-SCR plant. A linearized version of the model is used for state estimation while the full nonlinear model is used for control design.
Journal Article

Test Correlation Framework for Hybrid Electric Vehicle System Model

2011-04-12
2011-01-0881
A hybrid electric vehicle (HEV) system model, which directly simulates vehicle drive cycles with interactions among driver, environment, vehicle hardware and vehicle controls, is a critical CAE tool used through out the product development process to project HEV fuel economy (FE) capabilities. The accuracy of the model is essential and directly influences the HEV hardware designs and technology decisions. This ultimately impacts HEV product content and cost. Therefore, improving HEV system model accuracy and establishing high-level model-test correlation are imperative. This paper presents a Parameter Diagram (P-Diagram) based model-test correlation framework which covers all areas contributing to potential model simulation vs. vehicle test differences. The paper describes each area in detail and the methods of characterizing the influences as well as the correlation metrics.
Journal Article

Vehicle Powertrain Thermal Management System Using Model Predictive Control

2016-04-05
2016-01-0215
An advanced powertrain cooling system with appropriate control strategy and active actuators allows greater flexibility in managing engine temperatures and operating near constraints. An organized controls development process is necessary to allow comparison of multiple configurations to select the best way forward. In this work, we formulate, calibrate and validate a Model Predictive Controller (MPC) for temperature regulation and constraint handling in an advanced cooling system. A model-based development process was followed; where the system model was used to develop and calibrate a gain scheduled linear MPC. The implementation of MPC for continuous systems and the modification related to implementing switching systems has been described. Multiple hardware configurations were compared with their corresponding control system in simulations. The system level requirements were translated into MPC calibration parameters for consistent comparison between multiple configurations.
Technical Paper

A Connected Controls and Optimization System for Vehicle Dynamics and Powertrain Operation on a Light-Duty Plug-In Multi-Mode Hybrid Electric Vehicle

2020-04-14
2020-01-0591
This paper presents an overview of the connected controls and optimization system for vehicle dynamics and powertrain operation on a light-duty plug-in multi-mode hybrid electric vehicle developed as part of the DOE ARPA-E NEXTCAR program by Michigan Technological University in partnership with General Motors Co. The objective is to enable a 20% reduction in overall energy consumption and a 6% increase in electric vehicle range of a plug-in hybrid electric vehicle through the utilization of connected and automated vehicle technologies. Technologies developed to achieve this goal were developed in two categories, the vehicle control level and the powertrain control level. Tools at the vehicle control level include Eco Routing, Speed Harmonization, Eco Approach and Departure and in-situ vehicle parameter characterization.
Journal Article

Systems Engineering Excellence Through Design: An Integrated Approach Based on Failure Mode Avoidance

2013-04-08
2013-01-0595
Automotive Product Development organisations are challenged with ever increasing levels of systems complexity driven by the introduction of new technologies to address environmental concerns and enhance customer satisfaction within a highly competitive and cost conscious market. The technical difficulty associated with the engineering of complex automotive systems is compounded by the increase in sophistication of the control systems needed to manage the integration of technology packages. Most automotive systems have an electro-mechanical structure with control and software features embedded within the system. The conventional methods for design analysis and synthesis are engineering discipline focused (mechanical, electrical, electronic, control, software).
Technical Paper

Virtual Verification of Wrecker Tow Requirements

2020-04-14
2020-01-0766
Under various real-world scenarios, vehicles can become disabled and require towing. OEMs allow a few options for vehicle wrecker towing that include wheel lift tow using a stinger or towing on a flatbed. These methods entail multiple loading events that need to be assessed for damage to the towed vehicle. OEMs have several testing and evaluation methods in place for those scenarios with majority requiring physical vehicle prototypes. Recent focus to reduce product development time and cost has replaced the need for prototype testing with analytical verification methods. In this paper, the CAE method involving multibody dynamic simulation (MBDS) as well as finite element analysis (FEA) of vehicle flatbed operation, winching onto a flatbed, and stinger-pull towing are discussed.
Technical Paper

Vehicle Glass Design Optimization Using a CFD/SEA Model

2007-05-15
2007-01-2306
A new methodology to predict vehicle interior wind noise using CFD results has been developed. The CFD simulation replaces wind tunnel testing for providing flow field information around vehicle greenhouse. A loadcase model based on the CFD results is used to excite an SEA vehicle model. This new approach has been demonstrated on a production vehicle with success for the frequency range of 250-10K Hz. The CAE prediction of interior wind noise agrees within 0.2 sones from wind tunnel testing. The model has been used to evaluate wind noise performance with different door glass design parameters. A glass thickness change from 3.8 mm to 4.8 mm results in 1.1 sones improvement, which agrees well to 1.4 sones improvement from testing. Laminated glass with about 3 times higher damping results in 2.5 sones improvement. This methodology using CFD results can be used in the early stage of product development to impact designs.
Technical Paper

Numerical and experimental analysis of residual stresses at welding processes

2007-11-28
2007-01-2727
Residual stress can affect directly the quality of products as result of manufacturing process, for example, the vehicular assembly of sheet metal parts, where the welding of thin plates is applied. One method that can prevent it is the use of CAE which helps to understand the mechanism of welding effects using finite element methods. Using this tool is possible to evaluate the impact of the welding process in order to reduce time and costs during the product development. It helps also to foresee future durability/customer usage problems during the product life.
Technical Paper

Design and Development of 25% Post-Industrial Recycled SMC Hood Assembly for the 1998 Lincoln Continental Program

1998-02-23
981019
This paper describes the process of incorporation of 25% post-industrial recycled sheet molded composite (SMC) material in the 1998 Continental Hood inner. 1998 Continental Hood assembly consists of traditional SMC outer and this recycled hood inner along with three small steel reinforcements. BUDD Plastics collects SMC scraps from their manufacturing plants. The scrap is then processed and made into fillers for production of SMC. Strength of SMC comes from glass fibers and fillers are added to produce the final mix of raw materials. This recycled material is approximately 10% lighter and less stiff than the conventional virgin SMC. This presented unique challenges to the product development team to incorporate this material into a production vehicle in order to obtain the desired goal of reducing land fill and improving the environment.
Technical Paper

Power Control for the Escape and Mariner Hybrids

2007-04-16
2007-01-0282
Ford Motor Company has developed a full hybrid electric vehicle with a power-split hybrid powertrain. There are constraints imposed by the high voltage system in such an HEV, that do not exist in conventional vehicles. A significant controls problem that was addressed in the Ford Escape and Mercury Mariner Hybrids was the determination of the desired powertrain operating point such that the vehicle attributes of fuel economy, performance and drivability are met, while satisfying these new constraints. This paper describes the control system that addressed this problem and the tests that were designed to verify its operation.
X