Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

The Effects of Different Input Excitation on the Dynamic Characterization of an Automotive Shock Absorber

2001-04-30
2001-01-1442
This paper deals with the dynamic characterization of an automotive shock absorber, a continuation of an earlier work [1]. The objective of this on-going research is to develop a testing and analysis methodology for obtaining dynamic properties of automotive shock absorbers for use in CAE-NVH low-to-mid frequency chassis models. First, the effects of temperature and nominal length on the stiffness and damping of the shock absorber are studied and their importance in the development of a standard test method discussed. The effects of different types of input excitation on the dynamic properties of the shock absorber are then examined. Stepped sine sweep excitation is currently used in industry to obtain shock absorber parameters along with their frequency and amplitude dependence. Sine-on-sine testing, which involves excitation using two different sine waves has been done in this study to understand the effects of the presence of multiple sine waves on the estimated dynamic properties.
Technical Paper

Development of a Micro-Engine Testing System

2012-10-23
2012-32-0105
A test stand was developed to evaluate an 11.5 cc, two-stroke, internal combustion engine in anticipation of future combustion system modifications. Detailed engine testing and analysis often requires complex, specialized, and expensive equipment, which can be problematic for research budgets. This problem is compounded by the fact that testing “micro” engines involves low flow rates, high rotational speeds, and compact dimensions which demand high-accuracy, high-speed, and compact measurement systems. On a limited budget, the task of developing a micro-engine testing system for advanced development appears quite challenging, but with careful component selection it can be accomplished. The anticipated engine investigation includes performance testing, fuel system calibration, and combustion analysis. To complete this testing, a custom test system was developed.
Technical Paper

Sensor Fusion Approach for Dynamic Torque Estimation with Low Cost Sensors for Boosted 4-Cylinder Engine

2021-04-06
2021-01-0418
As the world searches for ways to reduce humanity’s impact on the environment, the automotive industry looks to extend the viable use of the gasoline engine by improving efficiency. One way to improve engine efficiency is through more effective control. Torque-based control is critical in modern cars and trucks for traction control, stability control, advanced driver assistance systems, and autonomous vehicle systems. Closed loop torque-based engine control systems require feedback signal(s); indicated mean effective pressure (IMEP) is a useful signal but is costly to measure directly with in-cylinder pressure sensors. Previous work has been done in torque and IMEP estimation using crankshaft acceleration and ion sensors, but these systems lack accuracy in some operating ranges and the ability to estimate cycle-cycle variation.
Technical Paper

Control-Oriented Modeling of a Vehicle Drivetrain for Shuffle and Clunk Mitigation

2019-04-02
2019-01-0345
Flexibility and backlash of vehicle drivelines typically cause unwanted oscillations and noise, known as shuffle and clunk, during tip-in and tip-out events. Computationally efficient and accurate driveline models are necessary for the design and evaluation of torque shaping strategies to mitigate this shuffle and clunk. To accomplish these goals, this paper develops a full-order physics-based model and uses this model to develop a reduced-order model (ROM), which captures the main dynamics that influence the shuffle and clunk phenomena. The full-order model (FOM) comprises several components, including the engine as a torque generator, backlash elements as discontinuities, and propeller and axle shafts as compliant elements. This model is experimentally validated using the data collected from a Ford vehicle. The validation results indicate less than 1% error between the model and measured shuffle oscillation frequencies.
Technical Paper

Dynamic Characterization of a Twin Plate Torque Converter Clutch During Controlled Slip

2024-04-09
2024-01-2715
This paper details testing for torque converter clutch (TCC) characterization during steady state and dynamic operation under controlled slip conditions on a dynamometer setup. The subject torque converter under test is a twin plate clutch with a dual stage turbine damper without a centrifugal pendulum absorber. An overview is provided of the dynamometer setup, hydraulic system and control techniques for regulating the apply pressure to the torque converter and clutch. To quantify the performance of the clutch in terms of control stability, pressure to torque relationship and the dynamic behavior during apply and release, a matrix of oil temperatures, output speeds, input torques, and clutch apply pressures were imposed upon the torque converter.
X