Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Responses of the THOR in Oblique Sled Impacts: Focus on Chest Deflection

2020-04-14
2020-01-0522
The National Highway Traffic Safety Administration (NHTSA) published a Request for Comments (RFC) on proposed changes to the New Car Assessment Program (NCAP) in 2015 and 2017. One potential change was the introduction of a frontal Oblique Impact (OI) crash test. The Test device for Human Occupant Restraint (THOR) in the front left seat was used in the proposed OI test. The motivations behind the current study were a) determine if OI sled tests can be simplified, b) study the sensitivity of the THOR chest deflection to the shoulder belt layout in OI and c) assess the NHTSA-proposed THOR thoracic injury risk curves. In the current study, eleven oblique sled impact tests were conducted. The environment was representative of a generic mid-sized sedan. The buck was mounted on a rigid plate that allowed the pre-test rotation of the buck relative to the sled axis. A generic mid-sized OI pulse was used. The pulse was applied in the longitudinal direction of the sled.
Technical Paper

Calibration and Validation of GISSMO Damage Model for A 780-MPa Third Generation Advanced High Strength Steel

2020-04-14
2020-01-0198
To evaluate vehicle crash performance in the early design stages, a reliable fracture model is needed in crash simulations to predict material fracture initiation and propagation. In this paper, a generalized incremental stress state dependent damage model (GISSMO) in LS-DYNA® was calibrated and validated for a 780-MPa third generation advanced high strength steels (AHSS), namely 780 XG3TM steel that combines high strength and ductility. The fracture locus of the 780 XG3TM steel was experimentally characterized under various stress states including uniaxial tension, shear, plane strain and equi-biaxial stretch conditions. A process to calibrate the parameters in the GISSMO model was developed and successfully applied to the 780 XG3TM steel using the fracture test data for these stress states.
Journal Article

Developing Safety Standards for FCVs and Hydrogen Vehicles

2009-04-20
2009-01-0011
The SAE Fuel Cell Vehicle (FCV) Safety Working Group has been addressing FCV safety for over 9 years. The initial document, SAE J2578, was published in 2002. SAE J2578 has been valuable as a Recommended Practice for FCV development with regard to the identification of hazards and the definition of countermeasures to mitigate these hazards such that FCVs can be operated in the same manner as conventional gasoline internal combustion engine (ICE)-powered vehicles. SAE J2578 is currently being revised so that it will continue to be relevant as FCV development moves forward. For example, test methods were refined to verify the acceptability of hydrogen discharges when parking in residential garages and commercial structures and after crash tests prescribed by government regulation, and electrical requirements were updated to reflect the complexities of modern electrical circuits which interconnect both AC and DC circuits to improve efficiency and reduce cost.
Journal Article

A Frontal Impact Taxonomy for USA Field Data

2008-04-14
2008-01-0526
An eight-group taxonomy was created to classify real-world frontal crashes from the Crashworthiness Data System (CDS) component of the National Automotive Sampling System (NASS). Three steps were taken to develop the taxonomy: (1) frontal-impact towaway crashes were identified by examining 1985-2005 model year light passenger vehicles with Collision Deformation Classification (CDC) data from the 1995-2005 calendar years of NASS; (2) case reviews, engineering judgments, and categorization assessments were conducted on these data to produce the eight-group taxonomy; and (3) two subsets of the NASS dataset were analyzed to assess the consistency of the resulting taxonomic-group frequencies. “Full-engagement” and “Offset” crashes were the most frequent crash types, each contributing approximately 33% to the total. The group identified as “D, Y, Z No-Rail” was the most over-represented crash type for vehicles with at least one seriously-injured occupant.
Journal Article

Pressure Based Sensing Approach for Front Impacts

2011-04-12
2011-01-1443
This study demonstrates the use of pressure sensing technology to predict the crash severity of frontal impacts. It presents an investigation of the pressure change in the front structural elements (bumper, crush cans, rails) during crash events. A series of subsystem tests were conducted in the laboratory that represent a typical frontal crash development series and provided empirical data to support the analysis of the concept. The pressure signal energy at different sensor mounting locations was studied and design concepts were developed for amplifying the pressure signal. In addition, a pressure signal processing methodology was developed that relies on the analysis of the air flow behavior by normalizing and integrating the pressure changes. The processed signal from the pressure sensor is combined with the restraint control module (RCM) signals to define the crash severity, discriminate between the frontal crash modes and deploy the required restraint devices.
Journal Article

A Component Test Methodology for Simulation of Full-Vehicle Side Impact Dummy Abdomen Responses for Door Trim Evaluation

2011-04-12
2011-01-1097
Described in this paper is a component test methodology to evaluate the door trim armrest performance in an Insurance Institute for Highway Safety (IIHS) side impact test and to predict the SID-IIs abdomen injury metrics (rib deflection, deflection rate and V*C). The test methodology consisted of a sub-assembly of two SID-IIs abdomen ribs with spine box, mounted on a linear bearing and allowed to translate in the direction of impact. The spine box with the assembly of two abdominal ribs was rigidly attached to the sliding test fixture, and is stationary at the start of the test. The door trim armrest was mounted on the impactor, which was prescribed the door velocity profile obtained from full-vehicle test. The location and orientation of the armrest relative to the dummy abdomen ribs was maintained the same as in the full-vehicle test.
Technical Paper

Side Impact Modeling using Quasi-Static Crush Data

1991-02-01
910601
This paper describes the development of a three-dimensional lumped-mass structure and dummy model to study barrier-to-car side impacts. The test procedures utilized to develop model input data are also described. The model results are compared to crash test results from a series of six barrier-to-car crash tests. Sensitivity analysis using the validated model show the necessity to account for dynamic structural rate effects when using quasi-statically measured vehicle crush data.
Technical Paper

Prevention of Snow Accretion on Camera Lenses of Autonomous Vehicles

2020-04-14
2020-01-0105
With the rapid development of artificial intelligence, the autonomous vehicles (AV) have attracted considerable attention in the automotive industry. However, different factors negatively impact the adoption of the AVs, delaying their successful commercialization. Accretion of atmospheric icing, especially wet snow, on AV sensors causes blockage on their lenses, making them prone to lose their sight, in turn, increasing potential chances of accidents. In this study, two different designs are proposed in order to prevent snow accretion on the lenses of AVs via air flow across the lens surface. In both designs, lenses made of plain glass and superhydrophobic coated glass surfaces are tested. While some researchers have shown promise of water repellency on superhydrophobic surfaces, more snow accretion is observed on the superhydrophobic surfaces, when compared to the plain glass lenses.
Technical Paper

Buzz Avoidance on Sunroof Light Sunshades: Design and Validation

2020-01-13
2019-36-0148
Sunroof is placed in certain high-end vehicles to give user a better driving experience. All automakers are searching alternatives to reduce weight and cost in the vehicle, in which sunroofs are also impacted. Some alternatives are already applied, as a honeycomb paper used in some sunshades that presents benefits, as less weight and with a good cost reduction. Although, due the reduced weight for this part produced in this material, it shows more susceptibility to reproduce the vibration that vehicle propagates in movement, especially in bad condition roads. The sunroof assembly is dependent of the roof reinforcement and roof skin, but in this special case, the validation could be done in the components itself because the interaction of the sunshades is directly dependent of the other sunroof parts, as rails and front frame.
Technical Paper

Robustness Design to Avoid Noise on Exterior Handle System

2020-01-13
2019-36-0137
Squeak and rattle are two undesirable occurrences during component operation and during vehicle driving condition, resulting in one of the top complains from costumers. One common grievance could happen during the user exterior handle operation and during side door closing. The exterior handle system during the operation could generate a squeak between interface parts, if materials and geometric tolerances was not been carefully designed. Also, vibration generated during door closing effort, might generate squeak between parts since the reinforcement for exterior handle touches the outer sheet metal internally. For this reason several guidelines might be included to avoid potential noise condition for this system during vehicle lifetime as correct material reduce friction between parts, taking into consideration the geometric condition between parts. Plus, coupling system on handles two pieces should also be evaluated to avoid squeak during use.
Technical Paper

Crankshaft Axial Vibration Analysis and Design Sensitivity Study

2007-05-15
2007-01-2298
The influence of the pin/main bearing journal diameters and the counter weight orientation to crankshaft axial vibration were examined using a fully flexible finite element engine model. The simulation, performed with AVL/Excite, incorporates modal contributions of all interfacing engine components and enables the study of interactions among the components. The simulation successfully predicted crankshaft axial vibration and was validated by measurements. The correlated CAE model was used to study modifications in crankshaft pin and main bearing journal diameters and in the orientation of the crankshaft counter weights. Design direction on how to minimize axial vibration was provided.
Technical Paper

A Systematic Approach to Preparing Drive Files for Squeak and Rattle Evaluations of Subsystems or Components

2007-05-15
2007-01-2269
Many decisions need to be made when test track data is used to set up Squeak & Rattle evaluations of subsystems or components. These decisions are judgment-based so different people with different backgrounds and experience levels will make different decisions - few of which can be called right or wrong - but they are different which causes problems. Squeak & Rattle evaluation has become more scientific in recent years as subjective evaluation has been replaced by quantitative methods like N10 Loudness and shakers have become quiet. It is the authors' contention that the variations caused by different judgment calls can no longer be tolerated. Therefore a methodical process was developed which assures that different people will get the same results from the same set of test track data.
Technical Paper

Transient Clunk Response of a Driveline System: Laboratory Experiment and Analytical Studies

2007-05-15
2007-01-2233
A laboratory experiment is designed to examine the clunk phenomenon. A static torque is applied to a driveline system via the mass of an overhanging torsion bar and electromagnet. Then an applied load may be varied via attached mass and released to simulate the step down (tip-out) response of the system. Shaft torques and torsional and translational accelerations are recorded at pre-defined locations. The static torque closes up the driveline clearances in the pinion/ring (crown wheel) mesh. With release of the applied load the driveline undergoes transient vibration. Further, the ratio of preload to static load is adjusted to lead to either no-impact or impact events. Test A provides a ‘linear’ result where the contact stiffness does not pass into clearance. This test is used for confirming transient response and studying friction and damping. Test B is for mass release with sufficient applied torque to pass into clearance, allowing the study of the clunk.
Technical Paper

Application of Signature Analysis and Operating Deflection Shapes to Identify Interior Noise Sources in an Excavator

2007-05-15
2007-01-2427
The objective of this study was to identify and gain an understanding of the origins of noise in a commercial excavator cab. This paper presents the results of two different tests that were used to characterize the vibration and acoustic characteristics of the excavator cab. The first test was done in an effort to characterize the vibration properties of the cab panels and their associated contribution to the noise level inside the cab. The second set, of tests, was designed to address the contribution of the external airborne noise produced by the engine and hydraulic pump to the overall interior noise. This paper describes the test procedures used to obtain the data for the signature analysis, operational deflection shapes (ODS), and sound diagnosis analysis. It also contains a discussion of the analysis results and an inside look into the possible contributors of key frequencies to the interior noise in the excavator cab.
Technical Paper

Refining Vibration Quality - A Study Characterizing Vehicle/Operator Interface Vibration on Snowmobiles and ATVs

2007-05-15
2007-01-2389
Sensory jury testing was utilized to characterize vibration levels perceived by the operator, with respect to levels measured using instrumentation, in order to develop a tool for the evaluation of vibration at the operator interfaces. Details of the jury testing and jury data processing method are highlighted as well as the refinement of vibration characterization for a specific application. The vibration at user interface locations of both snowmobiles and ATVs was measured along with subjective feedback from a panel of jurists. Statistical analysis was performed on the jury data to provide both a qualitative and quantitative number to represent the opinion of the jury. Correlations were developed between the measured levels of vibration and the opinions of the jury. Finally, a set of correlation functions suitable for design predictions was developed.
Technical Paper

Development and Validation of an Acoustic Encapsulation to Reduce Diesel Engine Noise

2007-05-15
2007-01-2375
This paper describes a study to demonstrate the feasibility of developing an acoustic encapsulation to reduce airborne noise from a commercial diesel engine. First, the various sources of noise from the engine were identified using Nearfield Acoustical Holography (NAH). Detailed NAH measurements were conducted on the four sides of the engine in an engine test cell. The main sources of noise from the engine were ranked and identified within the frequency ranges of interest. Experimental modal analysis was conducted on the oil pan and front cover plate of the engine to reveal correlations of structural vibration results with the data from the NAH. The second phase of the study involved the design and fabrication of the acoustical encapsulation (noise covers) for the engine in a test cell to satisfy the requirements of space, cost and performance constraints. The acoustical materials for the enclosure were selected to meet the frequency and temperature ranges of interest.
Technical Paper

Stochastic Analysis of Power Train Rigid Body Modes

2006-11-21
2006-01-2782
This work is focused on the computer aided engineering noise and vibration control area (CAE-NVH), which is one of the most important in the automobile industry. The reason for that relevancy is that the noise and vibration effects can be directly perceived by the costumer. The vibration of the seats and steering wheel, as well as audible noises are some examples of factors that can cause discomfort to the driver. During the early design of a car, the systems are designed in a way to reach a good modal management level in order to avoid resonance problems. The finite element models, used to predict these resonances, are normally generated using only deterministic values for the model parameters such as stiffnesses, thicknesses and masses. However, these properties have an uncertainty due to the manufacturing process which is, in most cases, not taken into consideration during the design.
Technical Paper

Biofidelity of Anthropomorphic Test Devices for Rear Impact

1997-11-12
973342
This study examines the biofidelity, repeatability, and reproducibility of various anthropomorphic devices in rear impacts. The Hybrid III, the Hybrid III with the RID neck, and the TAD-50 were tested in a rigid bench condition in rear impacts with ΔVs of 16 and 24 kph. The results of the tests were then compared to the data of Mertz and Patrick[1]. At a AV of 16 kph, all three anthropomorphic devices showed general agreement with Mertz and Patrick's data [1]. At a AV of 24 kph, the RID neck tended to exhibit larger discrepancies than the other two anthropomorphic devices. Also, two different RID necks produced significantly different moments at the occipital condyles under similar test conditions. The Hybrid III and the Hybrid III with the RID neck were also tested on standard production seats in rear impacts for a AV of 8 kph. Both the kinematics and the occupant responses of the Hybrid III and the Hybrid III with the RID neck differed from each other.
Technical Paper

Using Engine as Torsional Shaker for Vehicle Sensitivity Refinement at Idle Conditions

2007-05-15
2007-01-2319
Vehicle idle quality has become an increasing quality concern for automobile manufacturers because of its impact on customer satisfaction. There are two factors that critical to vehicle idle quality, the engine excitation force and vehicle sensitivity (transfer function). To better understand the contribution to the idle quality from these two factors and carry out well-planned improvement measures, a quick and easy way to measure vehicle sensitivity at idle conditions is desired. There are several different ways to get vehicle sensitivity at idle conditions. A typical way is to use CAE. One of the biggest advantages using CAE is that it can separate vehicle sensitivities to different forcing inputs. As always, the CAE results need to be validated before being fully utilized. Another way to get vehicle sensitivity is through impact test using impact hammer or shaker. However this method doesn't include the mount preload due to engine firing torque [3, 4, & 5].
Technical Paper

Modeling and Analysis of Powertrain Torsional Response

1998-02-23
980276
An analytical model is developed to describe the torsional responses of the powertrain system. The model is used to analyze system equilibrium, free vibration, forced and self-excited vibrations. The equations of motion are linearized about the equilibrium to determine natural frequencies and mode shapes of the torsional modes. The forced responses of the system are investigated by including the excitations of gas combustion forces and inertia torques induced by the reciprocating motions of the piston and connecting rod. The self-excited vibration induced by negative damping behavior of clutch torque capacity is studied. For an example rear-wheel drive powertrain considered, the free vibration analyses show the natural frequencies and the associated mode shapes. The forced and the self-excited vibrations for the transmission gearset and the driveline components are examined. Experimental measurements from a test powertrain are used to confirm the theoretical predictions.
X