Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Seat/Floor Coupling CAE Study for Body/Vehicle NVH

2008-04-14
2008-01-0254
In today's competitive automobile environment with shorter vehicle development time and fewer prototypes/tests, CAE is becoming very crucial for vehicle development. Seat is a critical system of automobiles for customer satisfaction because seat provides support, safety, and comfort especially NVH for vehicle occupants. In this paper, the effects of seat system on body and vehicle NVH were studied. How the seat system affected body and vehicle NVH, and how seat to floor coupling affected vehicle NVH were investigated. Two groups of finite element body models, body-on-frame and unitized body, were used for this study to ensure the effect of body architecture was included in this study. In the baseline body models, the seats were represented by detailed finite element models. Then, several versions of body models were built by modeling seats in different finite element representations.
Technical Paper

Mass Damper Optimization Study to Reduce Seat Vibration

2008-04-14
2008-01-0873
In order to remain competitive in the current challenging automotive industry, there is a great demand for a common design that can be used across different platforms. Such common design can not only lower the cost due to the high volume production, but also significantly reduces the design development time. However, how to meet different programs' unique requirements by the same design remains as a challenge. In the case of a seat design, it is important that the seat natural frequencies are separated from the full vehicle system's resonant frequencies to avoid the possible alignment causing the seat vibration issue. This paper describes a method of how to design a mass damper that not only separates the seat modes from the vehicle's specific resonant frequency range but also reduces the seat back vibration amplitude significantly. The response surface based optimization method is used to tune the elastic mass damper parameters to meet the program's specific requirements.
X