Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS)

2020-04-14
2020-01-0777
The Composite Hybrid Automotive Suspension System Innovative Structures (CHASSIS) is a project to develop structural commercial vehicle suspension components in high volume utilising hybrid materials and joining techniques to offer a viable lightweight production alternative to steel. Three components are in scope for the project:- Front Subframe Front Lower Control Arm (FLCA) Rear Deadbeam Axle
Technical Paper

The effects of contamination on commercial trucks rear suspension springs durability

2020-01-13
2019-36-0083
On current competitive scenario for road load transportation in Brazilian market, the operational costs should be reduced as much as possible. The suspension system commonly used on road commercial trucks is based on leaf spring use and Hotchkiss concept for axle locating devices. The use of leaf springs without bolt attachment eyelets are still common for rear suspension systems. When using the leaf spring with direct contact to the brackets, wear plates are placed between them to work as wear elements due to the friction between the parts. The friction will cause wear on the parts, and the wear plate is designed to suffer the damages of this friction instead of the leaf spring, being the cheapest element and can be easily replaced. When the system works on a severe contamination environment with high levels of grit and dirt, the degradation of the parts are accelerated.
Technical Paper

Buzz Avoidance on Sunroof Light Sunshades: Design and Validation

2020-01-13
2019-36-0148
Sunroof is placed in certain high-end vehicles to give user a better driving experience. All automakers are searching alternatives to reduce weight and cost in the vehicle, in which sunroofs are also impacted. Some alternatives are already applied, as a honeycomb paper used in some sunshades that presents benefits, as less weight and with a good cost reduction. Although, due the reduced weight for this part produced in this material, it shows more susceptibility to reproduce the vibration that vehicle propagates in movement, especially in bad condition roads. The sunroof assembly is dependent of the roof reinforcement and roof skin, but in this special case, the validation could be done in the components itself because the interaction of the sunshades is directly dependent of the other sunroof parts, as rails and front frame.
Technical Paper

Robustness Design to Avoid Noise on Exterior Handle System

2020-01-13
2019-36-0137
Squeak and rattle are two undesirable occurrences during component operation and during vehicle driving condition, resulting in one of the top complains from costumers. One common grievance could happen during the user exterior handle operation and during side door closing. The exterior handle system during the operation could generate a squeak between interface parts, if materials and geometric tolerances was not been carefully designed. Also, vibration generated during door closing effort, might generate squeak between parts since the reinforcement for exterior handle touches the outer sheet metal internally. For this reason several guidelines might be included to avoid potential noise condition for this system during vehicle lifetime as correct material reduce friction between parts, taking into consideration the geometric condition between parts. Plus, coupling system on handles two pieces should also be evaluated to avoid squeak during use.
Technical Paper

Crankshaft Axial Vibration Analysis and Design Sensitivity Study

2007-05-15
2007-01-2298
The influence of the pin/main bearing journal diameters and the counter weight orientation to crankshaft axial vibration were examined using a fully flexible finite element engine model. The simulation, performed with AVL/Excite, incorporates modal contributions of all interfacing engine components and enables the study of interactions among the components. The simulation successfully predicted crankshaft axial vibration and was validated by measurements. The correlated CAE model was used to study modifications in crankshaft pin and main bearing journal diameters and in the orientation of the crankshaft counter weights. Design direction on how to minimize axial vibration was provided.
Technical Paper

A Systematic Approach to Preparing Drive Files for Squeak and Rattle Evaluations of Subsystems or Components

2007-05-15
2007-01-2269
Many decisions need to be made when test track data is used to set up Squeak & Rattle evaluations of subsystems or components. These decisions are judgment-based so different people with different backgrounds and experience levels will make different decisions - few of which can be called right or wrong - but they are different which causes problems. Squeak & Rattle evaluation has become more scientific in recent years as subjective evaluation has been replaced by quantitative methods like N10 Loudness and shakers have become quiet. It is the authors' contention that the variations caused by different judgment calls can no longer be tolerated. Therefore a methodical process was developed which assures that different people will get the same results from the same set of test track data.
Technical Paper

Transient Clunk Response of a Driveline System: Laboratory Experiment and Analytical Studies

2007-05-15
2007-01-2233
A laboratory experiment is designed to examine the clunk phenomenon. A static torque is applied to a driveline system via the mass of an overhanging torsion bar and electromagnet. Then an applied load may be varied via attached mass and released to simulate the step down (tip-out) response of the system. Shaft torques and torsional and translational accelerations are recorded at pre-defined locations. The static torque closes up the driveline clearances in the pinion/ring (crown wheel) mesh. With release of the applied load the driveline undergoes transient vibration. Further, the ratio of preload to static load is adjusted to lead to either no-impact or impact events. Test A provides a ‘linear’ result where the contact stiffness does not pass into clearance. This test is used for confirming transient response and studying friction and damping. Test B is for mass release with sufficient applied torque to pass into clearance, allowing the study of the clunk.
Technical Paper

Application of Signature Analysis and Operating Deflection Shapes to Identify Interior Noise Sources in an Excavator

2007-05-15
2007-01-2427
The objective of this study was to identify and gain an understanding of the origins of noise in a commercial excavator cab. This paper presents the results of two different tests that were used to characterize the vibration and acoustic characteristics of the excavator cab. The first test was done in an effort to characterize the vibration properties of the cab panels and their associated contribution to the noise level inside the cab. The second set, of tests, was designed to address the contribution of the external airborne noise produced by the engine and hydraulic pump to the overall interior noise. This paper describes the test procedures used to obtain the data for the signature analysis, operational deflection shapes (ODS), and sound diagnosis analysis. It also contains a discussion of the analysis results and an inside look into the possible contributors of key frequencies to the interior noise in the excavator cab.
Technical Paper

Refining Vibration Quality - A Study Characterizing Vehicle/Operator Interface Vibration on Snowmobiles and ATVs

2007-05-15
2007-01-2389
Sensory jury testing was utilized to characterize vibration levels perceived by the operator, with respect to levels measured using instrumentation, in order to develop a tool for the evaluation of vibration at the operator interfaces. Details of the jury testing and jury data processing method are highlighted as well as the refinement of vibration characterization for a specific application. The vibration at user interface locations of both snowmobiles and ATVs was measured along with subjective feedback from a panel of jurists. Statistical analysis was performed on the jury data to provide both a qualitative and quantitative number to represent the opinion of the jury. Correlations were developed between the measured levels of vibration and the opinions of the jury. Finally, a set of correlation functions suitable for design predictions was developed.
Technical Paper

Development and Validation of an Acoustic Encapsulation to Reduce Diesel Engine Noise

2007-05-15
2007-01-2375
This paper describes a study to demonstrate the feasibility of developing an acoustic encapsulation to reduce airborne noise from a commercial diesel engine. First, the various sources of noise from the engine were identified using Nearfield Acoustical Holography (NAH). Detailed NAH measurements were conducted on the four sides of the engine in an engine test cell. The main sources of noise from the engine were ranked and identified within the frequency ranges of interest. Experimental modal analysis was conducted on the oil pan and front cover plate of the engine to reveal correlations of structural vibration results with the data from the NAH. The second phase of the study involved the design and fabrication of the acoustical encapsulation (noise covers) for the engine in a test cell to satisfy the requirements of space, cost and performance constraints. The acoustical materials for the enclosure were selected to meet the frequency and temperature ranges of interest.
Technical Paper

Stochastic Analysis of Power Train Rigid Body Modes

2006-11-21
2006-01-2782
This work is focused on the computer aided engineering noise and vibration control area (CAE-NVH), which is one of the most important in the automobile industry. The reason for that relevancy is that the noise and vibration effects can be directly perceived by the costumer. The vibration of the seats and steering wheel, as well as audible noises are some examples of factors that can cause discomfort to the driver. During the early design of a car, the systems are designed in a way to reach a good modal management level in order to avoid resonance problems. The finite element models, used to predict these resonances, are normally generated using only deterministic values for the model parameters such as stiffnesses, thicknesses and masses. However, these properties have an uncertainty due to the manufacturing process which is, in most cases, not taken into consideration during the design.
Technical Paper

Analytical Study for Transient Driveline Clunk Response Subject to Step Torque Input by a Mass Release System

2007-05-15
2007-01-2244
A series of laboratory driveline clunk experiment was conducted by using an overhung torsion bar and electromagnet to create a sudden change in torque loading in the driveline system. The change of the torque loading was designed to force the driveline to go through the gear lashes inside the rear axle and result in clunk phenomenon. The study was investigated by using a simulation code developed in Matlab and ADAMS CAE. The analytical study enabled parametric investigation of component contribution to various time responses exhibited in the experiment. The results also revealed intricate interaction between the friction properties and the driveline torsional dynamics which were observed in the experiment.
Technical Paper

Modeling and Analysis of Powertrain Torsional Response

1998-02-23
980276
An analytical model is developed to describe the torsional responses of the powertrain system. The model is used to analyze system equilibrium, free vibration, forced and self-excited vibrations. The equations of motion are linearized about the equilibrium to determine natural frequencies and mode shapes of the torsional modes. The forced responses of the system are investigated by including the excitations of gas combustion forces and inertia torques induced by the reciprocating motions of the piston and connecting rod. The self-excited vibration induced by negative damping behavior of clutch torque capacity is studied. For an example rear-wheel drive powertrain considered, the free vibration analyses show the natural frequencies and the associated mode shapes. The forced and the self-excited vibrations for the transmission gearset and the driveline components are examined. Experimental measurements from a test powertrain are used to confirm the theoretical predictions.
Technical Paper

The Application of Experimental Design Method to Brake Induced Vehicle Vibrations

1998-02-23
980902
Vehicle sensitivity to brake induced vehicle vibration has been one of the key factors impacting overall vehicle quality. This directly affects long term customer satisfaction. The objective of this investigation is to understand the sensitivities of a given suspension, and steering system with respect to brake induced vehicle vibration, and develop possible solutions to this problem. Design of experiment methods have been used for this chassis system sensitivity study. The advantage of applying the design of experiment methodology is that it facilitates an understanding of the interactions between the hardware components and the sensitivity of the system due to the component change. The results of this investigation have indicated that the friction of suspension joints may affect vehicle system response significantly.
Technical Paper

Chassis System Integration Approach for Vehicle High Mileage NVH Robustness

1998-02-23
980903
High mileage NVH performance is one of the major concerns in vehicle design for long term customer satisfaction. Elastomeric bushings and brake rotors are key chassis components which tend to degrade as vehicle mileage accumulates with time. The degradation of these components normally causes the overall degradation of vehicle NVH performance. In the current paper two categories of problems are addressed respectively: road-induced vibration due to bushing degradation, and brake roughness due to rotor wear. A system integration approach is used to derive the design strategies that can potentially make the vehicle more robust in these two NVH attributes. The approach links together bushing degradation characteristics, brake rotor wear characteristics, the design of experiment (DOE) method, and CAE modeling in a systematic fashion. The concept and method are demonstrated using a production vehicle.
Technical Paper

Transient Dynamic Analysis of Suspension System for Component Fatigue Life Estimation

2007-04-16
2007-01-0638
For suspension systems, fatigue and strength simulations are accomplished mostly at the component level. However, the selection of loading conditions and replication of boundary conditions at the component level may be difficult. A system level simulation eliminates most of the discrepancy between component level and vehicle level environment yielding realistic results. Further advantage of system level simulation is that the boundary conditions are limited to suspension mounting points at body or frame and the loading is limited to wheel-end or tire patch loading. This provides for a robust set of boundary constraints that are known and repeatable, and loads that are simpler and of relatively higher accuracy. Here, the nonlinear transient dynamic behavior of a suspension system along with its frame and mounting was simulated using a multibody finite element analysis (FEA).
Technical Paper

Vehicle Rollover Sensor Test Modeling

2007-04-16
2007-01-0686
A computational model of a mid-size sport utility vehicle was developed using MADYMO. The model includes a detailed description of the suspension system and tire characteristics that incorporated the Delft-Tyre magic formula description. The model was correlated by simulating a vehicle suspension kinematics and compliance test. The correlated model was then used to simulate a J-turn vehicle dynamics test maneuver, a roll and non-roll ditch test, corkscrew ramp and a lateral trip test, the results of which are presented in this paper. The results indicate that MADYMO is able to reasonably predict the vehicle and occupant responses in these types of applications and is potentially suited as a tool to help setup a suite of vehicle configurations and test conditions for rollover sensor testing. A suspension system sensitivity study is presented for the laterally tripped non-roll event.
Technical Paper

Vehicle Response Comparison to Tire Tread Separations Induced by Circumferentially Cut and Distressed Tires

2007-04-16
2007-01-0733
In this study, tests were performed with modified tires at the right rear location on a solid rear axle sport utility vehicle to compare the vehicle inputs from both: (1) tire tread belt detachments staged by circumferentially cut tires, and (2) a tire tread detachment staged by distressing a tire in a laboratory environment. The forces and moments that transfer through the road wheel were measured at the right and left rear wheel locations using wheel force transducers; displacements were measured between the rear axle and the frame at the shock absorber mounting locations, ride height displacements were measured at the four corners of the vehicle, and accelerations were measured on the rear axle. Onboard vehicle accelerations and velocities were measured as well. The data shows that the tire tread belt detachments prepared by circumferentially cut tires and distressed tires have similar inputs to the vehicle.
Technical Paper

Implicit and Explicit Finite Element Methods for Crash Safety Analysis

2007-04-16
2007-01-0982
Explicit method is commonly used in crashworthiness analysis due to its capability to solve highly non-linear problems without numerous iterations and convergence problems. However, the time step for explicit methods is limited by the time that the physical wave crosses the element. Therefore, to avoid large amount of CPU time, the explicit method is usually used for non-linear dynamic problems with a short period of simulation duration. For problems under quasi-static loading conditions at pre-crash and post-crash, implicit method could be more efficient than explicit methods because the required computation time is much shorter. Due to the recent advance of crash codes, which allows both implicit and explicit computations to be performed in the same code, crash engineers are able to use explicit computation for crash simulation as well as implicit computation for some of the pre-crash quasi-static loading or post-crash spring back simulations.
Technical Paper

Seat/Floor Coupling CAE Study for Body/Vehicle NVH

2008-04-14
2008-01-0254
In today's competitive automobile environment with shorter vehicle development time and fewer prototypes/tests, CAE is becoming very crucial for vehicle development. Seat is a critical system of automobiles for customer satisfaction because seat provides support, safety, and comfort especially NVH for vehicle occupants. In this paper, the effects of seat system on body and vehicle NVH were studied. How the seat system affected body and vehicle NVH, and how seat to floor coupling affected vehicle NVH were investigated. Two groups of finite element body models, body-on-frame and unitized body, were used for this study to ensure the effect of body architecture was included in this study. In the baseline body models, the seats were represented by detailed finite element models. Then, several versions of body models were built by modeling seats in different finite element representations.
X