Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Wall-Wetting Parameters Over the Operating Region of a Sequential Fuel-Injected SI Engine

1998-02-23
980792
In modern engine control applications, there is a distinct trend towards model-based control schemes. There are various reasons for this trend: Physical models allow deeper insights compared to heuristic functions, controllers can be designed faster and more accurately, and the possibility of obtaining an automated application scheme for the final engine to be controlled is a significant advantage. Another reason is that if physical effects can be separated, higher order models can be applied for different subsystems. This is in contrast to heuristic functions where the determination of the various maps poses large problems and is thus only feasible for low order models. One of the most important parts of an engine management system is the air-to-fuel control. The catalytic converter requires the mean air-to-fuel ratio to be very accurate in order to reach its optimal conversion rate. Disturbances from the active carbon filter and other additional devices have to be compensated.
Technical Paper

Model-Based Engine Calibration for Best Fuel Efficiency

1995-02-01
950983
Today's engine management systems for SI engines consist of static and dynamic control algorithms. The static functions of the engine management guarantee the correct stationary operation of the engine in all the possible operating points. The static functions are contained mainly in two lookup tables, one for the spark advance and one for the metered depending on engine speed and load. Usually these lookup tables are determined with experiments on the engine test bench. In this paper, a model-based method for the evaluation of the fuel-optimal maps for spark advance and metered fuel is described. The method can be divided into several steps: 1. Measurement and identification of all the engine parameters in a reference point (including the pressure in one cylinder) Calculation of the burn-through function (progress of the combustion) Iterative calculation of the amount of residual exhaust gas Approximation of the definitive burn-through function with the Vibe equation 2.
X