Refine Your Search

Topic

Author

Search Results

Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode. Presenter Seung-il Moon
Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

2009-04-20
2009-01-1510
In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Journal Article

Reduction of Steady-State CFD HVAC Simulations into a Fully Transient Lumped Parameter Network

2014-05-10
2014-01-9121
Since transient vehicle HVAC computational fluids (CFD) simulations take too long to solve in a production environment, the goal of this project is to automatically create a lumped-parameter flow network from a steady-state CFD that solves nearly instantaneously. The data mining algorithm k-means is implemented to automatically discover flow features and form the network (a reduced order model). The lumped-parameter network is implemented in the commercial thermal solver MuSES to then run as a fully transient simulation. Using this network a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track localized temperatures near specific objects (such as equipment in vehicles).
Journal Article

Design of Catalytic Devices by Means of Genetic Algorithm: Comparison Between Open-Cell Foam and Honeycomb Type Substrates

2016-04-05
2016-01-0965
Metallic foams or sponges are materials with a cell structure suitable for many industrial applications, such as reformers, heat catalytic converters, etc. The success of these materials is due to the combination of various characteristics such as mechanical strength, low density, high specific surface, good thermal exchange properties, low flow resistance and sound absorption. Different materials and manufacturing processes produce different type of structure and properties for various applications. In this work a genetic algorithm has been developed and applied to support the design of catalytic devices. In particular, two substrates were considered, namely the traditional honeycomb and an alternative open-cell foam type. CFD simulations of pressure losses and literature based correlations for the heat and mass transfer were used to support the genetic algorithm in finding the best compromise between flow resistance and pollutant abatement.
Technical Paper

A McPherson Lightweight Suspension Arm

2020-04-14
2020-01-0772
The paper deals with the design and manufacturing of a McPherson suspension arm made from short glass fiber reinforced polyamide (PA66). The design of the arm and the design of the molds have been made jointly. According to Industry 4.0 paradigms, a full digitalization of both the product and process has been performed. Since the mechanical behavior of the suspension arm strongly depends on constraints which are difficult to be modelled, a simpler structure with well-defined mechanical constraints has been developed. By means of such simple structure, the model for the behavior of the material has been validated. Since the suspension arm is a hybrid structure, the associated simple structure is hybrid as well, featuring a metal sheet with over-molded polymer. The issues referring to material flow, material to material contact, weld lines, fatigue strength, high and low temperature behavior, creep, dynamic strength have been investigated on the simple structure.
Technical Paper

Experimental Investigation of the Compression Ignition Process of High Reactivity Gasoline Fuels and E10 Certification Gasoline using a High-Pressure Direct Injection Gasoline Injector

2020-04-14
2020-01-0323
Gasoline compression ignition (GCI) technology shows the potential to obtain high thermal efficiencies while maintaining low soot and NOx emissions in light-duty engine applications. Recent experimental studies and numerical simulations have indicated that high reactivity gasoline-like fuels can further enable the benefits of GCI combustion. However, there is limited empirical data in the literature studying the gasoline compression ignition process at relevant in-cylinder conditions, which are required for further optimizing combustion system designs. This study investigates the temporal and spatial evolution of the compression ignition process of various high reactivity gasoline fuels with research octane numbers (RON) of 71, 74 and 82, as well as a conventional RON 97 E10 gasoline fuel. A ten-hole prototype gasoline injector specifically designed for GCI applications capable of injection pressures up to 450 bar was used.
Journal Article

Development of an ESP Control Logic Based on Force Measurements Provided by Smart Tires

2013-04-08
2013-01-0416
The present paper investigates possible enhancement of ESP performance associated with the use of smart tires. In particular a novel control logic based on a direct feedback on the longitudinal forces developed by the four tires is considered. The control logic was developed using a simulation tool including a 14 dofs vehicle model and a smart tires emulator. Performance of the control strategy was evaluated in a series of handling maneuvers. The same maneuvers were performed on a HiL test bench interfacing the same vehicle model with a production ESP ECU. Results of the two logics were analyzed and compared.
Technical Paper

Root Cause Identification and Methods of Reducing Rear Window Buffeting Noise

2007-05-15
2007-01-2402
Rear Window Buffeting (RWB) is the low-frequency, high amplitude, sound that occurs in many 4-door vehicles when driven 30-70 mph with one rear window lowered. The goal of this paper is to demonstrate that the mechanisms of RWB are similar to that of sun roof buffeting and to describe the results of several actions suspected in contributing to the severity of RWB. Finally, the results of several experiments are discussed that may lend insight into ways to reduce the severity of this event. A detailed examination of the side airflow patterns of a small Sport Utility Vehicle (SUV) shows these criteria exist on a small SUV, and experiments to modify the SUV airflow pattern to reduce RWB are performed with varying degrees of success. Based on the results of these experiments, design actions are recommended that may result in the reduction of RWB.
Technical Paper

Enhancement of Engineering Education through University Competition-Based Events

2006-11-13
2006-32-0049
Engineering education at the University level is enhanced by competition-based projects. The SAE Clean Snowmobile Challenge is a prime example of how competition-based engineering education benefits the small engines industry and improves the engineering talent pool of the nation in general. For the past several decades, SAE has encouraged young engineers to compete in designing off road vehicles (Baja SAE ®), small race cars (Formula SAE ®), remote control airplanes (Aero Design ®), high mileage vehicles (Supermileage ®) and robots (Walking Robot ®). Now a new competition, the SAE Clean Snowmobile Challenge ™ (CSC), based on designing a cleaner and quieter snowmobile has led to a new path for young engineers to explore the challenges of designing engines that emit less pollution and noise. The paper will summarize the results of the most recent Clean Snowmobile Challenge 2006 and document the successes of the past seven years of the Challenge.
Technical Paper

Oxygen and Propellant Extraction from Martian Atmosphere: Feasibility Study of a Small Technological Demonstration Plant

2008-06-29
2008-01-1984
The sustainability of Martian outposts development is strongly based on the capability of achieving a high level of autonomy both in terms of operations management and of resources availability. In situ production of consumables is a key point to allow humans to work and live on Mars avoiding or limiting the need for re-supplies of materials from Earth. Required consumables can be produced in situ exploiting the locally available resources, but also by means of green-houses and waste recycle systems. Dedicated robotic missions for in situ demonstration of this type of technologies are a fundamental step of the Martian In Situ Resources Utilization (ISRU) development roadmap. This paper is focused on the extraction of oxygen and fuels (e.g. methane) from the Martian atmosphere, and presents a feasibility study for a small technological demonstration plant.
Technical Paper

The Calculation of Mass Fraction Burn of Ethanol-Gasoline Blended Fuels Using Single and Two-Zone Models

2008-04-14
2008-01-0320
One-dimensional single-zone and two-zone analyses have been exercised to calculate the mass fraction burned in an engine operating on ethanol/gasoline-blended fuels using the cylinder pressure and volume data. The analyses include heat transfer and crevice volume effects on the calculated mass fraction burned. A comparison between the two methods is performed starting from the derivation of conservation of energy and the method to solve the mass fraction burned rates through the results including detailed explanation of the observed differences and trends. The apparent heat release method is used as a point of reference in the comparison process. Both models are solved using the LU matrix factorization and first-order Euler integration.
Technical Paper

Adequacy of Reduced Order Models for Model-Based Control in a Urea-SCR Aftertreatment System

2008-04-14
2008-01-0617
Model-based control strategies are important for meeting the dual objective of maximizing NOx reduction and minimizing NH3 slip in urea-SCR catalysts. To be implementable on the vehicle, the models should capture the essential behavior of the system, while not being computationally intensive. This paper discusses the adequacy of two different reduced order SCR catalyst models and compares their performance with a higher order model. The higher order model assumes that the catalyst has both diffusion and reaction kinetics, whereas the reduced order models contain only reaction kinetics. After describing each model, its parameter identification and model validation based on experiments on a Navistar I6 7.6L engine are presented. The adequacy of reduced order models is demonstrated by comparing the NO, NO2 and NH3 concentrations predicted by the models to their concentrations from the test data.
Technical Paper

On-Site DME Generation from Methanol for Pilot Injection in CI Engines

2003-10-27
2003-01-3198
Dual fuel (CI) engines provide an excellent means of maintaining high thermal efficiency and power while reducing emissions, particularly in situations where the primary fuel does not exhibit good auto-ignition characteristics. This is especially true of diesel engines operating on natural gas; usually in stationary applications such as distributed power generation. However, because two fuels are needed, the reliability of the engine is compromised. Therefore, this paper describes the first phase of a project that is to eventually manufacture dimethyl ether (DME) from natural gas and supply it to the pilot injector of a dual fuel engine. A chemical pilot plant has been built and operated, demonstrating an intermediate step in the production of DME from natural gas. DME is manufactured from methanol for pilot injection into a dual fuel engine operating with natural gas as the main fuel.
Technical Paper

HEUI Injector Modeling and ROI Experiments for High Injection Pressure of Diesel and Dimethyl Ether (DME)

2016-04-05
2016-01-0855
Dimethyl Ether (DME) is considered a clean alternative fuel to diesel due to its soot-free combustion characteristics and its capability to be produced from renewable energy sources rather than fossil fuels such as coal or petroleum. To mitigate the effect of strong wave dynamics on fuel supply lines caused due to the high compressibility of DME and to overcome its low lubricity, a hydraulically actuated electronic unit injector (HEUI) with pressure intensification was used. The study focuses on high pressure operation, up to 2000 bar, significantly higher than pressure ranges reported previously with DME. A one-dimensional HEUI injector model is built in MATLAB/SIMULINK graphical software environment, to predict the rate of injection (ROI) profile critical to spray and combustion characterization.
Technical Paper

Numerical Investigation of Spark Ignition Events in Lean and Dilute Methane/Air Mixtures Using a Detailed Energy Deposition Model

2016-04-05
2016-01-0609
It is beneficial but challenging to operate spark-ignition engines under highly lean and dilute conditions. The unstable ignition behavior can result in downgraded combustion performance in engine cylinders. Numerical approach is serving as a promising tool to identify the ignition requirements by providing insight into the complex physical/chemical phenomena. An effort to simulate the early stage of flame kernel initiation in lean and dilute fuel/air mixture has been made and discussed in this paper. The simulations are set to validate against laboratory results of spark ignition behavior in a constant volume combustion vessel. In order to present a practical as well as comprehensive ignition model, the simulations are performed by taking into consideration the discharge circuit analysis, the detailed reaction mechanism, and local heat transfer between the flame kernel and spark plug.
Technical Paper

Simulation of One-pass Dimethylether Production from Natural Gas for Potential Use in a NG/DME Dual-fuel CI Engine

2006-10-16
2006-01-3358
A model process to produce dimethylether (DME) from natural gas (NG) was simulated in a one-pass mode (no material recycle), assuming steady-state and chemical and physical equilibrium. NG conversion to synthesis gas (syngas) via steam reforming resulted in stoichiometric numbers of 2.97 along with vapor mole fraction extremes for carbon dioxide, methane, and water. These concentrations formed an eight-trial simulation grid of syngas compositions. Simulation of DME production was performed in a dual reactor configuration with methanol formation as the intermediate compound. Solutions resulting from the subsequent adiabatic dehydration of the methanol-rich phase showed a consistent DME composition (88%). The resulting solutions and unreacted syngas streams from simulation were examined for applicability to a dual-fuel NG/DME CI engine.
Technical Paper

Multi-Dimensional Modeling of Combustion in Compression Ignition Engines Operating with Variable Charge Premixing Levels

2011-09-11
2011-24-0027
Premixed combustion modes in compression ignition engines are studied as a promising solution to meet fuel economy and increasingly stringent emissions regulations. Nevertheless, PCCI combustion systems are not yet consolidated enough for practical applications. The high complexity of such combustion systems in terms of both air-fuel charge preparation and combustion process control requires the employment of robust and reliable numerical tools to provide adequate comprehension of the phenomena. Object of this work is the development and validation of suitable models to evaluate the effects of charge premixing levels in diesel combustion. This activity was performed using the Lib-ICE code, which is a set of applications and libraries for IC engine simulations developed using the OpenFOAM® technology.
Technical Paper

A Review of the State of the Art of Electric Traction Motors Cooling Techniques

2018-04-03
2018-01-0057
This paper provides a review on state-of-art modern cooling systems employed for thermal cooling of electric motors for vehicle applications. In recent years, the pursue of a more sustainable and ecofriendly mobility has pushed the research towards the development of electric vehicle powertrain systems. Besides the evident advantages of the adoption of electric traction systems in terms of pollution and efficiency, the need of an effective cooling system for the electric machine components gained more and more importance in order to maintain high efficiency and ensure high durability. In fact, it is known that high temperatures can be harmful for the electric motor: besides the evident damages for mechanical parts, the influence on the permanent magnet properties is not negligible [1] [2]. In this fast-evolving environment, different solutions for the thermal problem have been researched and adopted, each one with its own pros and cons.
Technical Paper

Investigation of Combustion Knock Distribution in a Boosted Methane-Gasoline Blended Fueled SI Engine

2018-04-03
2018-01-0215
The characteristics of combustion knock metrics over a number of engine cycles can be an essential reference for knock detection and control in internal combustion engines. In a Spark-Ignition (SI) engine, the stochastic nature of combustion knock has been shown to follow a log-normal distribution. However, this has been derived from experiments done with gasoline only and applicability of log-normal distribution to dual-fuel combustion knock has not been explored. To evaluate the effectiveness and accuracy of log-normal distributed knock model for methane-gasoline blended fuel, a sweep of methane-gasoline blend ratio was conducted at two different engine speeds. Experimental investigation was conducted on a single cylinder prototype SI engine equipped with two fuel systems: a direct injection (DI) system for gasoline and a port fuel injection (PFI) system for methane.
Technical Paper

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-04-16
2012-01-0837
A 2007 Cummins ISL 8.9L direct-injection common rail diesel engine rated at 272 kW (365 hp) was used to load the filter to 2.2 g/L and passively oxidize particulate matter (PM) within a 2007 OEM aftertreatment system consisting of a diesel oxidation catalyst (DOC) and catalyzed particulate filter (CPF). Having a better understanding of the passive NO₂ oxidation kinetics of PM within the CPF allows for reducing the frequency of active regenerations (hydrocarbon injection) and the associated fuel penalties. Being able to model the passive oxidation of accumulated PM in the CPF is critical to creating accurate state estimation strategies. The MTU 1-D CPF model will be used to simulate data collected from this study to examine differences in the PM oxidation kinetics when soy methyl ester (SME) biodiesel is used as the source of fuel for the engine.
X