Refine Your Search

Topic

Search Results

Viewing 1 to 15 of 15
Technical Paper

Research on Joining High Pressure Die Casting Parts by Self-Pierce Riveting (SPR) Using Ring-Groove Die Comparing to Heat Treatment Method

2020-04-14
2020-01-0222
Nowadays, the increasing number of structural high pressure die casting (HPDC) aluminum parts need to be joined with high strength steel (HSS) parts in order to reduce the weight of vehicle for fuel-economy considerations. Self-Pierce Riveting (SPR) has become one of the strongest mechanical joining solutions used in automotive industry in the past several decades. Joining HPDC parts with HSS parts can potentially cause joint quality issues, such as joint button cracks, low corrosion resistance and low joint strength. The appropriate heat treatment will be suggested to improve SPR joint quality in terms of cracks reduction. But the heat treatment can also result in the blister issue and extra time and cost consumption for HPDC parts. The relationship between the microstructure of HPDC material before and after heat treatment with the joint quality is going to be investigated and discussed for interpretation of cracks initiation and propagation during riveting.
Journal Article

Effects of Controlled Modulation on Surface Textures in Deep-Hole Drilling

2012-09-10
2012-01-1868
Deep-hole drilling is among the most critical precision machining processes for production of high-performance discrete components. The effects of drilling with superimposed, controlled low-frequency modulation - Modulation-Assisted Machining (MAM) - on the surface textures created in deep-hole drilling (ie, gun-drilling) are discussed. In MAM, the oscillation of the drill tool creates unique surface textures by altering the burnishing action typical in conventional drilling. The effects of modulation frequency and amplitude are investigated using a modulation device for single-flute gun-drilling on a computer-controlled lathe. The experimental results for the gun-drilling of titanium alloy with modulation are compared and contrasted with conventional gun-drilling. The chip morphology and surface textures are characterized over a range of modulation conditions, and a model for predicting the surface texture is presented. Implications for production gun-drilling are discussed.
Technical Paper

Thermal Interface Materials Based on Anchored Carbon Nanotubes

2007-07-09
2007-01-3127
The new devices and missions to achieve the aims of NASA's Science Mission Directorate (SMD) are creating increasingly demanding thermal environments and applications. In particular, the low conductance of metal-to-metal interfaces used in the thermal switches lengthen the cool-down phase and resource usage for spacecraft instruments. During this work, we developed and tested a vacuum-compatible, durable, heat-conduction interface that employs carbon nanotube (CNT) arrays directly anchored on the mating metal surfaces via microwave plasma-enhanced, chemical vapor deposition (PECVD). We demonstrated that CNT-based thermal interface materials have the potential to exceed the performance of currently available options for thermal switches and other applications.
Technical Paper

Numerical Modeling of the Damping Effect of Fibrous Acoustical Treatments

2001-04-30
2001-01-1462
The damping effect that is observed when a fibrous acoustical treatment is applied to a thin metal panel typical of automotive structures has been modeled by using three independent techniques. In the first two methods the fibrous treatment was modeled by using the limp frame formulation proposed by Bolton et al., while the third method makes use of a general poro-elastic model based on the Biot theory. All three methods have been found to provide consistent predictions that are in excellent agreement with one another. An examination of the numerical results shows that the structural damping effect results primarily from the suppression of the nearfield acoustical motion within the fibrous treatment, that motion being closely coupled with the vibration of the base panel. The observed damping effect is similar in magnitude to that provided by constrained layer dampers having the same mass per unit area as the fibrous layer.
Technical Paper

A Comparison Between Power Injection and Impulse Response Decay Methods for Estimating Frequency Averaged Loss Factors for SEA

2003-05-05
2003-01-1566
Damping measurements on vehicle subsystems are rarely straightforward due to the complexity of the dynamic interaction of system joints, trim, and geometry. Various experimental techniques can be used for damping estimation, such as frequency domain modal analysis curve-fitting methods, time domain decay-rate methods, and other methods based on energy and wave propagation. Each method has its own set of advantages and drawbacks. This paper describes an analytical and an experimental comparison between two, widely used loss factor estimation techniques frequently used in Statistical Energy Analysis (SEA). The single subsystem Power Injection Method (PIM) and the Impulse Response Decay Method (IRDM) were compared using analytical models of a variety of simulated simple spring-mass-damper systems. Frequency averaged loss factor values were estimated from both methods for comparison.
Technical Paper

A 2-D Computational Model Describing the Flow and Filtration Characteristics of a Ceramic Diesel Particulate Trap

1998-02-23
980545
A 2-D computational model was developed to describe the flow and filtration processes, in a honeycomb structured ceramic diesel particulate trap. This model describes the steady state trap loading, as well as the transient behavior of the flow and filtration processes. The theoretical model includes the effect of a copper fuel additive on trap loading and transient operation. The convective terms were based on a 2-D analytical flow field solution derived from the conservation of mass and momentum equations. The filtration theory incorporated in the time dependent numerical code included the diffusion, inertia, and direct interception mechanisms. Based on a measured upstream particle size distribution, using the filtration theory, the downstream particle size distribution was calculated. The theoretical filtration efficiency, based on particle size distribution, agreed very well (within 1%) with experimental data for a number of different cases.
Technical Paper

Water and Energy Transport for Crops under Different Lighting Conditions

2006-07-17
2006-01-2028
When high-intensity discharge (HID) electric lamps are used for plant growth, system inefficiencies occur due to an inability to effectively target light to all photosynthetic tissues of a growing crop stand, especially when it is closed with respect to light penetration. To maintain acceptable crop productivity, light levels typically are increased thus increasing heat loads on the plants. Evapotranspiration (ET) or transparent thermal barrier systems are subsequently required to maintain thermal balance, and power-intensive condensers are used to recover the evaporated water for reuse in closed systems. By accurately targeting light to plant tissues, electric lamps can be operated at lower power settings and produce less heat. With lower power and heat loads, less energy is used for plant growth, and possibly less water is evapotranspired. By combining these effects, a considerable energy savings is possible.
Technical Paper

Drawbeads in Sheet Metal Stamping - A Review

1997-02-24
970986
The paper reviews the role of drawbeads in sheet metal stamping. The design of drawbeads is discussed in depth, with treatment of different bead cross sections, bead end shapes, and bead materials. International standards and practices are included. This is followed by the historical development of the modeling of the drawbead restraining force, starting with basic equilibrium approaches, and leading to the use of the finite element method which permits the study of drawbead effects on sheet metal flow in three dimensions. Finally, the potential of active drawbeads is described based upon ongoing research which is directed toward closed-loop computer control of the stamping process through adjustment of the drawbead penetration.
Technical Paper

Surfactant Biodegradation for Application to Advanced Life Support Water Recycling Systems

2004-07-19
2004-01-2513
Complete reuse of graywater will be essential during long duration human space missions. The highest loaded and most important component to remove from graywater is surfactant, the active ingredient in soaps and detergents. When considering a biological treatment system for processing of graywater, surfactant biodegradability becomes a very important consideration. Surfactants should be chosen that are degraded at a fast rate and yield inconsequential degradation byproducts. Experiments conducted for this research examined the biodegradation of the surfactants in Pert Plus for Kids, disodium cocoamphodiacetate (DSCADA) and sodium laureth-3 sulfate (SLES), using respirometry. Rates of CO2 production, or ultimate degradation, are reported. DSCADA was found to be toxic to bacteria when present at 270 ppm whereas no toxicity was observed during experiments with SLES.
Technical Paper

Finite Difference Heat Transfer Model of a Steel-clad Aluminum Brake Rotor

2005-10-09
2005-01-3943
This paper describes the heat transfer model of a composite aluminum brake rotor and compares the predicted temperatures to dynamometer measurements taken during a 15 fade stop trial. The model is based on meshed surface geometry which is simulated using RadTherm software. Methods for realistically modeling heat load distribution, surface rotation, convection cooling and radiation losses are also discussed. A comparison of the simulation results to the dynamometer data shows very close agreement throughout the fade stop trial. As such, the model is considered valid and will be used for further Steel Clad Aluminum (SCA) rotor development.
Technical Paper

Fracture Mechanics Based Approach for Quantifying Corrosion Damage

1999-04-20
1999-01-1589
The objective of this project is to quantify structural degradation due to corrosion through a fracture mechanics based approach. The metric parameters employed are Equivalent Initial Flaw Size and general material loss. Another objective is to correlate a measurable property to the amount of structural durability damage from corrosion, ideally through current NDE technology, with eddy-current as the primary choice. The approach is comprised by the following areas: corroding aluminum alloys, evaluation of the corrosion through techniques such as surface roughness and eddy current, cyclic testing, calculation of corrosion metric, and, correlation between corrosion metric and physically measurable properties.
Technical Paper

Vibrational and Sound Radiation Properties of a Double Layered Diesel Engine Gear Cover

1999-05-17
1999-01-1773
The introduction of a thin fluid layer between two layers of sheet metal offers a highly effective and economical alternative to the use of constrained viscoelastic damping layers in sheet metal structures. A diesel engine gear cover, which is constructed of two sheet metal sections spot welded together, takes advantage of fluid layer damping to produce superior vibration and sound radiation performance. In this paper, the bending of a double layered plate coupled through a thin fluid layer is modeled using a traveling wave approach which results in a impedance function that can be used to assess the vibration and sound radiation performance of practical double layered plate structures. Guided by this model, the influence of fluid layer thickness and inside-to-outside sheet thickness is studied.
Technical Paper

Fatigue Damage Modeling Approach Based on Evolutionary Power Spectrum Density

2019-04-02
2019-01-0524
Fatigue damage prediction approaches in both time and frequency domains have been developed to simulate the operational life of mechanical structures under random loads. Fatigue assessment of mechanical structures and components subjected to those random loads is increasingly being addressed by frequency domain approaches because of time and cost savings. Current frequency-based fatigue prediction methods focus on stationary random loadings (stationary Power Spectral Density), but many machine components, such as jet engines, rotating machines, and tracked vehicles are subjected to non-stationary PSD conditions under real service loadings. This paper describes a new fatigue damage modeling approach capable of predicting fatigue damage for structures exposed to non-stationary (evolutionary) PSD loading conditions where the PSD frequency content is time-varying.
Journal Article

Graphene Coating as a Corrosion Protection Barrier for Metallic Terminals in Automotive Environments

2021-04-06
2021-01-0354
Inside an automobile, hundreds of connectors and electrical terminals in various locations experience different corrosive environments. These connectors and electrical terminals need to be corrosion-proof and provide a good electrical contact for a vehicle’s lifetime. Saltwater and sulfuric acid are some of the main corrosion concerns for these electrical terminals. Currently, various thin metallic layers such as gold (Au), silver (Ag), or tin (Sn) are plated with a nickel (Ni) layer on copper alloy (Cu) terminals to ensure reliable electrical conduction during service. Graphene due to its excellent chemical stability can serve as a corrosion protective layer and prevent electrochemical oxidation of metallic terminals. In this work, effects of thin graphene layers grown by plasma-enhanced chemical vapor deposition (PECVD) on Au and Ag terminals and thin-film devices were investigated. Various mechanical, thermal/humidity, and electrical tests were performed.
Journal Article

A Computational Multiaxial Model for Stress-Strain Analysis of Ground Vehicle Notched Components

2017-03-28
2017-01-0329
Driveline and suspension notched components of off-road ground vehicles often experience multiaxial fatigue failures along notch locations. Large nominal load histories may induce local elasto-plastic stress and strain responses at the critical notch locations. Fatigue life prediction of such notched components requires detailed knowledge of local stresses and strains at notch regions. The notched components that are often subject to multiaxial loadings in services, experience complex stress and strain responses. Fatigue life assessment of the components utilizing non-linear Finite Element Analysis (FEA) require unfeasibly inefficient computation times and large data. The lack of more efficient and effective methods of elasto-plastic stress-strain calculation may lead to the overdesign or earlier failures of the components or costly experiments and inefficient non-linear FEA.
X