Refine Your Search

Search Results

Viewing 1 to 17 of 17
Video

Evaluation of a NOx Transient Response Method for OBD of SCR Catalysts

2012-01-30
OBD requirements for aftertreatment system components require monitoring of the individual system components. One such component can be an NH3-SCR catalyst for NOx reduction. An OBD method that has been suggested is to generate positive or negative spikes in the inlet NH3 concentration, and monitor the outlet NOx transient response. A slow response indicates that the catalyst is maintaining its NH3 storage capacity, and therefore it is probably not degraded. A fast response indicates the catalyst has lost NH3 storage capacity, and may be degraded. The purpose of the work performed at Southwest Research Institute was to assess this approach for feasibility, effectiveness and practicality. The presentation will describe the work performed, results obtained, and implications for applying this method in test laboratory and real-world situations. Presenter Gordon J. Bartley, Southwest Research Institute
Video

SCR Deactivation Kinetics for Model-Based Control and Accelerated Aging Applications

2012-06-18
This paper forms the third of a series and presents results obtained during the testing and development phase of a dedicated range extender engine designed for use in a compact class vehicle. The first paper in this series used real world drive logs to identify usage patterns of such vehicles and a driveline model was used to determine the power output requirements of a range extender engine for this application. The second paper presented the results of a design study. Key attributes for the engine were identified, these being minimum package volume, low weight, low cost, and good NVH. A description of the selection process for identifying the appropriate engine technology to satisfy these attributes was given and the resulting design highlights were described. The paper concluded with a presentation of the resulting specification and design highlights of the engine. This paper will present the resulting engine performance characteristics.
Video

Brief Investigation of SCR High Temperature N2O Production

2012-06-18
Nitrous Oxide (N2O) is a greenhouse gas with a Global Warming Potential (GWP) of 298-310 [1,2] (298-310 times more potent than carbon dioxide (CO2)). As a result, any aftertreatment system that generates N2O must be well understood to be used effectively. Under low temperature conditions, N2O can be produced by Selective Catalytic Reduction (SCR) catalysts. The chemistry is reasonably well understood with N2O formed by the thermal decomposition of ammonium nitrate [3]. Ammonium nitrate and N2O form in oxides of nitrogen (NOx) gas mixtures that are high in nitrogen dioxide (NO2)[4]. This mechanism occurs at a relatively low temperature of about 200°C, and can be controlled by maintaining the nitric oxide (NO)/NO2 ratio above 1. However, N2O has also been observed at relatively high temperatures, in the region of 500°C.
Video

SCR Deactivation Study for OBD Applications

2012-06-18
Selective catalytic reduction (SCR) catalysts will be used to reduce oxides of nitrogen (NOx) emissions from internal combustion engines in a number of applications [1,2,3,4]. Southwest Research Institute® (SwRI)® performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO2 formulation, a Cu-zeolite formulation and an Fe-zeolite formulation. This work describes NOx timed response to ammonia (NH3) transients as a function of thermal aging time and temperature. It has been proposed that the response time of NOx emissions to NH3 transients, effected by changes in diesel emissions fluid (DEF) injection rate, could be used as an on-board diagnostic (OBD) metric. The objective of this study was to evaluate the feasibility and practicality of this OBD approach.
Journal Article

Brief Investigation of SCR High Temperature N2O Production

2012-04-16
2012-01-1082
Nitrous Oxide (N₂O) is a greenhouse gas with a Global Warming Potential (GWP) of 298-310 (298-310 times more potent than carbon dioxide (CO₂)). As a result, any aftertreatment system that generates N₂O must be well understood to be used effectively. Under low temperature conditions, N₂O can be produced by Selective Catalytic Reduction (SCR) catalysts. The chemistry is reasonably well understood with N₂O formed by the thermal decomposition of ammonium nitrate. Ammonium nitrate and N₂O form in oxides of nitrogen (NOx) gas mixtures that are high in nitrogen dioxide (NO₂). This mechanism occurs at a relatively low temperature of about 200°C, and can be controlled by maintaining the nitric oxide (NO)/NO₂ ratio above 1. However, N₂O has also been observed at relatively high temperatures, in the region of 500°C.
Technical Paper

Ruthenium-Based Catalyst in EGR Leg of a D-EGR Engine Offers Combustion Improvements Through Selective NOX Removal

2016-04-05
2016-01-0952
A recent collaborative research project between Southwest Research Institute® (SwRI®) and the University of Texas at San Antonio (UTSA) has demonstrated that a ruthenium (Ru) catalyst is capable of converting oxides of nitrogen (NOX) emissions to nitrogen (N2) with high activity and selectivity. Testing was performed on coated cordierite ceramic cores using SwRI’s Universal Synthetic Gas Reactor® (USGR®). Various gas mixtures were employed, from model gas mixes to full exhaust simulant gas mixes. Activity was measured as a function of temperature, and gaseous inhibitors and promoters were identified. Different Ru supports were tested to identify ones with lowest temperature activity. A Ru catalyst can be used in the exhaust gas recirculation (EGR) leg of a Dedicated-EGR (D-EGR) engine [1,2], where it uses carbon monoxide (CO) and hydrogen (H2) present in the rich gas environment to reduce NOX to N2 with 100% efficiency and close to 100% selectivity to N2.
Technical Paper

Countering the Effects of Media Interferences and Background Contamination in Collection of Low Concentration Aldehydes and Ketones in Engine Exhaust with Dinitrophenylhydrazine (DNPH) Derivatization

2011-08-30
2011-01-2060
This paper discusses a method developed to counter the variability of media interferences for the measurement of aldehydes and ketones in automotive exhaust. Dinitrophenylhydrazine (DNPH) Derivatization Methodology for the collection of aldehyde and ketone compounds in vehicle exhaust has been in use for over thirty years. These carbonyl compounds are captured by passing diluted exhaust gas through a sample medium containing DNPH. The sampling medium can take the form of DNPH dispersed on a solid sorbent or as a DNPH solution in a solvent such as acetonitrile. Carbonyl compounds react readily to form DNPH derivatives which are stable and which absorb ultra-violet (UV) light, facilitating quantitative measurement. However, when the procedure was developed, emissions rates from vehicles were much higher than the current (2010) emissions levels.
Technical Paper

SCR Deactivation Kinetics for Model-Based Control and Accelerated Aging Applications

2012-04-16
2012-01-1077
Selective Catalytic Reduction (SCR) catalysts are used to reduce NOx emissions from internal combustion engines in a variety of applications. Southwest Research Institute (SwRI) performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO₂ formulation, a Cu-zeolite formulation and a Fe-zeolite formulation. This work describes NH₃ storage capacity measurement data as a function of aging time and temperature. Addressing one objective of the work, these data can be used in model-based control algorithms to calculate the current NH₃ storage capacity of an SCR catalyst operating in the field, based on time and temperature history. The model-based control then uses the calculated value for effective DEF control and prevention of excessive NH₃ slip. Addressing a second objective of the work, accelerated thermal aging of SCR catalysts may be achieved by elevating temperatures above normal operating temperatures.
Technical Paper

SCR Deactivation Study for OBD Applications

2012-04-16
2012-01-1076
Selective catalytic reduction (SCR) catalysts will be used to reduce oxides of nitrogen (NOx) emissions from internal combustion engines in a number of applications. Southwest Research Institute® (SwRI)® performed an Internal Research & Development project to study SCR catalyst thermal deactivation. The study included a V/W/TiO₂ formulation, a Cu-zeolite formulation and an Fe-zeolite formulation. This work describes NOx timed response to ammonia (NH₃) transients as a function of thermal aging time and temperature. It has been proposed that the response time of NOx emissions to NH₃ transients, effected by changes in diesel emissions fluid (DEF) injection rate, could be used as an on-board diagnostic (OBD) metric. The objective of this study was to evaluate the feasibility and practicality of this OBD approach.
Technical Paper

Regulated Emissions from Biodiesel Tested in Heavy-Duty Engines Meeting 2004 Emission Standards

2005-05-11
2005-01-2200
Biodiesel produced from soybean oil, canola oil, yellow grease, and beef tallow was tested in two heavy-duty engines. The biodiesels were tested neat and as 20% by volume blends with a 15 ppm sulfur petroleum-derived diesel fuel. The test engines were a 2002 Cummins ISB and 2003 DDC Series 60. Both engines met the 2004 U.S. emission standard of 2.5 g/bhp-h NOx+HC (3.35 g/kW-h) and utilized exhaust gas recirculation (EGR). All emission tests employed the heavy-duty transient procedure as specified in the U.S. Code of Federal Regulations. Reduction in PM emissions and increase in NOx emissions were observed for all biodiesels in all engines, confirming observations made in older engines. On average PM was reduced by 25% and NOx increased by 3% for the two engines tested for a variety of B20 blends. These changes are slightly larger in magnitude, but in the same range as observed in older engines.
Technical Paper

Transient Emissions from Two Natural Gas-Fueled Heavy-Duty Engines

1993-10-01
932819
The use of compressed natural gas as an alternative to conventional fuels has received a great deal of attention as a strategy for reducing air pollution from motor vehicles. In many cases, regulatory action has been taken to displace diesel fuel with natural gas in truck and bus applications. Emissions results of heavy-duty transient FTP testing of two Cummins L10-240G natural gas engines are presented. Regulated emissions of non-methane hydrocarbons, total hydrocarbons, CO, NOx, and particulate were characterized, along with emissions of formaldehyde. The effects of air/fuel ratio adjustments on these emissions were explored, as well as the effectiveness of catalytic aftertreatment in reducing exhaust emissions. Compared to typical heavy-duty diesel engine emissions, CNG-fueled engines using exhaust aftertreatment have great potential for meeting future exhaust emission standards, although in-use durability is unproven.
Technical Paper

Long-Term Aging of NOx Sensors in Heavy-Duty Engine Exhaust

2005-10-24
2005-01-3793
Research has shown that there are many factors that affect the long-term performance of nitrogen oxides (NOx) control systems used in diesel engine applications. However, if the NOx emissions can be accurately monitored, it might be possible to restore performance by making adjustments to the control systems. This paper presents results from a study that tested the durability of 25 NOx sensors exposed to heavy-duty diesel exhaust for 6,000 hours. The study, conducted by the Advanced Petroleum-Based Fuels - Diesel Emission Controls (APBF-DEC) project, tested the sensors at various locations in the exhaust stream.
Technical Paper

The Effect of Biodiesel Fuels on Transient Emissions from Modern Diesel Engines, Part II Unregulated Emissions and Chemical Characterization

2000-06-19
2000-01-1968
The use of biodiesel fuels derived from vegetable oils or animal fats as a substitute for conventional petroleum fuel in diesel engines has received increased attention. This interest is based on a number of properties of biodiesel including the fact that it is produced from a renewable resource, its biodegradability, and its potential beneficial effects on exhaust emissions. As part of Tier 1 compliance requirements for EPA's Fuel Registration Program, a detailed chemical characterization of the transient exhaust emissions from three modern diesel engines was performed, both with and without an oxidation catalyst. This characterization included several forms of hydrocarbon speciation, as well as measurement of aldehydes, ketones, and alcohols. In addition, both particle-phase and semivolatile-phase PAH and nitro-PAH compounds were measured. Unregulated emissions were characterized with neat biodiesel and with a blend of biodiesel and conventional diesel fuel.
Technical Paper

The Effect of Biodiesel Fuels on Transient Emissions from Modern Diesel Engines, Part I Regulated Emissions and Performance

2000-06-19
2000-01-1967
The use of biodiesel fuels derived from vegetable oils or animal fats as a substitute for conventional petroleum fuel in diesel engines has received increased attention. This interest is based on a number of properties of biodiesel including the fact that it is produced from a renewable resource, its biodegradability, and its potential beneficial effects on exhaust emissions. Transient exhaust emissions from three modern diesel engines were measured during this study, both with and without an oxidation catalyst. Emissions were characterized with neat biodiesel and with a blend of biodiesel and conventional diesel fuel. Regulated emissions and performance data are presented in this paper, while the results of a detailed chemical characterization of exhaust emissions are presented in a companion paper. The use of biodiesel resulted in lower emissions of unburned hydrocarbons, carbon monoxide, and particulate matter, with some increase in emissions of oxides of nitrogen on some engines.
Technical Paper

The Effect of a Turbocharger Clearance Control Coating on the Performance and Emissions of a 2-Stroke Diesel Engine

1999-10-25
1999-01-3665
Extensive efforts are being made to improve emissions from 2-stroke diesel engines. These improvements are primarily directed towards older model year engines with relatively high emissions compared with modern diesel engines. While most researchers focus their attention on engine design changes that promise substantial emission improvements, this work dealt with the turbocharger characteristics, especially as related to using internal coatings on both the compressor and turbine housings. Two identical turbochargers were tested on a Detroit Diesel 6V-92TA engine. One of the two turbochargers was left in its production configuration while the other was coated with a clearance control coating on the inside of the compressor and turbine housings. This coating led to a significant reduction in the tip clearance of both the compressor and turbine wheels.
Technical Paper

Water-Gas-Shift Catalyst Development and Optimization for a D-EGR® Engine

2015-09-01
2015-01-1968
Dedicated Exhaust Gas Recirculation (D-EGR®) technology provides a novel means for fuel efficiency improvement through efficient, on-board generation of H2 and CO reformate [1, 2]. In the simplest form of the D-EGR configuration, reformate is produced in-cylinder through rich combustion of the gasoline-air charge mixture. It is also possible to produce more H2 by means of a Water Gas Shift (WGS) catalyst, thereby resulting in further combustion improvements and overall fuel consumption reduction. In industrial applications, the WGS reaction has been used successfully for many years. Previous engine applications of this technology, however, have only proven successful to a limited degree. The motivation for this work was to develop and optimize a WGS catalyst which can be employed to a D-EGR configuration of an internal combustion engine. This study consists of two parts.
Technical Paper

Identifying Limiters to Low Temperature Catalyst Activity

2015-04-14
2015-01-1025
The drive to more fuel efficient vehicles is underway, with passenger car targets of 54.5 mpg fleet average by 2025. Improving engine efficiency means reducing losses such as the heat lost in the exhaust gases. However, reducing exhaust temperature makes it harder for emissions control catalysts to function because they require elevated temperatures to be active. Addressing this conundrum was the focus of the work performed. The primary objective of this work was to identify low temperature limiters for a variety of catalyst aftertreatment types. The ultimate goal is to reduce catalyst light-off temperatures, and the knowledge needed is an understanding of what prevents a catalyst from lighting off, why, and how it may be mitigated. Collectively these are referred to here as low temperature limiters to catalyst activity.
X