Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Comparison of Exhaust Emissions, Including Toxic Air Contaminants, from School Buses in Compressed Natural Gas, Low Emitting Diesel, and Conventional Diesel Engine Configurations

2003-03-03
2003-01-1381
In the United States, most school buses are powered by diesel engines. Some have advocated replacing diesel school buses with natural gas school buses, but little research has been conducted to understand the emissions from school bus engines. This work provides a detailed characterization of exhaust emissions from school buses using a diesel engine meeting 1998 emission standards, a low emitting diesel engine with an advanced engine calibration and a catalyzed particulate filter, and a natural gas engine without catalyst. All three bus configurations were tested over the same cycle, test weight, and road load settings. Twenty-one of the 41 “toxic air contaminants” (TACs) listed by the California Air Resources Board (CARB) as being present in diesel exhaust were not found in the exhaust of any of the three bus configurations, even though special sampling provisions were utilized to detect low levels of TACs.
Technical Paper

Transient Emissions from Two Natural Gas-Fueled Heavy-Duty Engines

1993-10-01
932819
The use of compressed natural gas as an alternative to conventional fuels has received a great deal of attention as a strategy for reducing air pollution from motor vehicles. In many cases, regulatory action has been taken to displace diesel fuel with natural gas in truck and bus applications. Emissions results of heavy-duty transient FTP testing of two Cummins L10-240G natural gas engines are presented. Regulated emissions of non-methane hydrocarbons, total hydrocarbons, CO, NOx, and particulate were characterized, along with emissions of formaldehyde. The effects of air/fuel ratio adjustments on these emissions were explored, as well as the effectiveness of catalytic aftertreatment in reducing exhaust emissions. Compared to typical heavy-duty diesel engine emissions, CNG-fueled engines using exhaust aftertreatment have great potential for meeting future exhaust emission standards, although in-use durability is unproven.
Technical Paper

Effects of Increased Altitude on Heavy-Duty Diesel Engine Emissions

1994-03-01
940669
Concern over emissions from heavy-duty diesel engines at high altitudes prompted an investigation into the effects of increasing altitude on gaseous and particulate emissions. On behalf of the Engine Manufacturers Association, emissions from a Detroit Diesel Corporation Series 60 at local test conditions (barometer 98.9 kPa), and two simulated altitudes, Denver (82.6 kPa) and Mexico City (77.9 kPa) were examined using a special altitude simulation CVS. Transient torque output and full load steady-state torque, for this turbocharged aftercooled engine, decreased slightly with increasing altitude. Although, the DDC Series 60 compensates for variation in barometer, transient composite emissions of HC, CO, CO2, smoke, and particulate matter generally increased with increasing altitude for both transient and steady-state operation.
Technical Paper

Effects of Cetane Number on Emissions From a Prototype 1998 Heavy-Duty Diesel Engine

1995-02-01
950251
As stringent emission regulations further constrain engine manufacturers by tightening both NOx and particulate emission limits, a knowledge of fuel effects becomes more important than ever. Among the fuel properties that affect heavy-duty diesel engine emissions, cetane number can be very important. Part of the CRC-APRAC VE-10 Project was developed to quantify the effects of cetane number on NOx and other emissions from a prototype 1998 Detroit Diesel Series 60. Three fuels with different natural cetane number (41, 45, 52) were treated with several levels and types of cetane improvers to study a range of cetane number from 40 to 60. Statistical analysis was used to define how regulated emissions from this prototype 1998 engine decreased with chemically-induced cetane number increase. Variation of HC, CO, NOx, and PM were modeled using a combination of a fuel's naturally-occurring cetane number and its total cetane number obtained with cetane improver.
X