Refine Your Search

Topic

Author

Search Results

Journal Article

Advancement in Vehicle Development Using the Auto Transfer Path Analysis

2014-04-01
2014-01-0379
This paper presents the most recent advancement in the vehicle development process using the one-step or auto Transfer Path Analysis (TPA) in conjunction with the superelement, component mode synthesis, and automated multi-level substructuring techniques. The goal is to identify the possible ways of energy transfer from the various sources of excitation through numerous interfaces to given target locations. The full vehicle model, consists of superelements, has been validated with the detailed system model for all loadcases. The forces/loads can be from rotating components, powertrain, transfer case, chain drives, pumps, prop-shaft, differential, tire-wheel unbalance, road input, etc., and the receiver can be at driver/passenger ears, steering column/wheel, seats, etc. The traditional TPA involves two solver runs, and can be fairly complex to setup in order to ensure that the results from the two runs are consistent with subcases properly labeled as input to the TPA utility.
Journal Article

A Study of Mass Drivers in the Brake System

2014-09-28
2014-01-2506
It is obvious at this point even to the most casual observer of the automotive industry that efforts to reduce mass throughout the vehicle are at a fervor. The industry is facing its most significant increase in fuel economy standards in its history, and light-weighting the vehicle is a major enabler. Despite the performance and quality of the brake system being intensely related to its mass, it too has not been spared scrutiny. However, like many modern automotive subsystems, it is very complex and mass reduction opportunities that do not sacrifice performance or quality are not always obvious. There are some interesting and sometimes even profound relationships between mass and other vehicle attributes built into brake system design, and making these more visible can enable a better balancing of brake system with the rest of the vehicle design objectives. Examples include - what is the cost, in terms of brake system mass, of added engine power? Of tire and wheel size?
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Journal Article

Methodology for Sizing and Validating Life of Brake Pads Analytically

2014-09-28
2014-01-2495
An area of brake system design that has remained continually resistant to objective, computer model based predictive design and has instead continued to rely on empirical methods and prior history, is that of sizing the brake pads to insure satisfactory service life of the friction material. Despite advances in CAE tools and methods, the ever-intensifying pressures of shortened vehicle development cycles, and the loss of prototype vehicle properties, there is still considerable effort devoted to vehicle-level testing on public roads using “customer-based” driving cycles to validate brake pad service life. Furthermore, there does not appear to be a firm, objective means of designing the required pad volume into the calipers early on - there is still much reliance on prior experience.
Journal Article

Tuning Dampers for Ride and Handling of Production Vehicles

2015-04-14
2015-01-1589
The goal of this paper is to discuss the critical aspects of damper tuning for production vehicles. These aspects include ride and handling performance attributes, damper basics, conflicts in achieving desirable results, tuning philosophies, and the influence of the damper design. The marketplace has become increasingly competitive. Customer preference, cost, mass and regulatory pressures often conflict. Yet each year more vehicles are required to do all these things well. Damper tuning can play a significant role in resolving these conflicts. Although many papers have been written on the theory behind damper design and capabilities, there has been very little written about the techniques of tuning dampers for production vehicles. This paper attempts to discuss the critical aspects of damper tuning for production vehicles in four sections. The first section discusses the performance attributes of ride and handling. The second section provides a basic understanding of dampers.
Technical Paper

The Calculation of Mass Fraction Burn of Ethanol-Gasoline Blended Fuels Using Single and Two-Zone Models

2008-04-14
2008-01-0320
One-dimensional single-zone and two-zone analyses have been exercised to calculate the mass fraction burned in an engine operating on ethanol/gasoline-blended fuels using the cylinder pressure and volume data. The analyses include heat transfer and crevice volume effects on the calculated mass fraction burned. A comparison between the two methods is performed starting from the derivation of conservation of energy and the method to solve the mass fraction burned rates through the results including detailed explanation of the observed differences and trends. The apparent heat release method is used as a point of reference in the comparison process. Both models are solved using the LU matrix factorization and first-order Euler integration.
Technical Paper

Using Simulation to Quantify Sine with Dwell Maneuver Test Metric Variability

2008-04-14
2008-01-0590
The Sine with Dwell (SWD) maneuver is the basis for the NHTSA FMVSS-126 regulation. When put into effect, all vehicles under 10,000 lbs GVWR will need to pass this test. Understanding the variability in the yaw rate ratio and lateral displacement test metrics is important for vehicle design. Anything that influences vehicle handling can affect test metric variability. Vehicle handling performance depends largely on vertical tire patch loads, tire force and moment behavior, on slip angle, and camber angle. Tire patch loads are influenced, among other things, by weight distribution and (quasi-static and dynamic) roll-couple distribution. Tire force and moment relationships have a distinct shapes, but they all commonly rise to a peak value at a given slip angle value and then fall off with increasing slip angle. Severe handling maneuvers, like the SWD operate at slip angles that are at, or above, the peak lateral force.
Technical Paper

Real-Time Estimation of Wheel Imbalances for Chassis Prognosis

2010-04-12
2010-01-0245
“Wheel balancing” is one of the common automotive repairs that the owners of an automobile usually experience. An unbalanced set of a tire and a rim or wheel on which the tire is mounted could cause vibration while driving. Such vibrations may be sensed by the driver at the steering wheel (known as smooth road shake). If left untreated for a long period of time, the vibration, induced by the imbalance, may propagate to chassis components such as bearing and bushing. This in turn causes excessive wear that eventually leads to a premature failure. Therefore, an early detection of wheel imbalances can not only significantly reduce the cost and time for diagnosis and repair of the wheel, but also prevent further damage to chassis components. This paper studies the feasibility of real-time detection of wheel imbalances in real world driving conditions, using recursive least square estimation method. The simulation study shows promising results for implementation in a real vehicle.
Technical Paper

Snow surface model for tire performance simulation

2000-06-12
2000-05-0252
New tire model is under development in European Commission research project called VERT (Vehicle Road Tire Interaction, BRPR-CT97-0461). The objective of the project is to create a physical model for tire/surface contact simulation. One of the subtasks has been to develop a method for snow surface characterization. The aim is simulate winter tire on snow surface with FEM software. This kind of simulation has been earlier done with snow model parameters from laboratory experiments. A snow shear box device has been developed in Helsinki University of Technology to measure mechanical properties of snow in field conditions. Both shear and compression properties can be measured with the device. With the device, a large number of snow measurements have been done at the same time with VERT winter tire testing in Nokian Tyres'' test track in Ivalo Finland. Measurement data have been postprocessed afterwards and parameters for material models have been evaluated.
Technical Paper

The Effects of Different Input Excitation on the Dynamic Characterization of an Automotive Shock Absorber

2001-04-30
2001-01-1442
This paper deals with the dynamic characterization of an automotive shock absorber, a continuation of an earlier work [1]. The objective of this on-going research is to develop a testing and analysis methodology for obtaining dynamic properties of automotive shock absorbers for use in CAE-NVH low-to-mid frequency chassis models. First, the effects of temperature and nominal length on the stiffness and damping of the shock absorber are studied and their importance in the development of a standard test method discussed. The effects of different types of input excitation on the dynamic properties of the shock absorber are then examined. Stepped sine sweep excitation is currently used in industry to obtain shock absorber parameters along with their frequency and amplitude dependence. Sine-on-sine testing, which involves excitation using two different sine waves has been done in this study to understand the effects of the presence of multiple sine waves on the estimated dynamic properties.
Technical Paper

The GM RWD PHEV Propulsion System for the Cadillac CT6 Luxury Sedan

2016-04-05
2016-01-1159
This paper describes the capabilities of a new two-motor plug-in hybrid-electric propulsion system developed for rear wheel drive. The PHEV system comprises a 2.0L turbocharged 4-cylinder direct-injected gasoline engine with the new hybrid transmission [1], a new traction power inverter module, a liquid-cooled lithium-ion battery pack, and on-board battery charger and 12V power converter module. The capability and features of the system components are described, and component performance and vehicle data are reported. The resulting propulsion system provides an excellent combination of electric-only driving, acceleration, and fuel economy.
Technical Paper

Development of Bicycle Carrier for Bicyclist Pre-Collision System Evaluation

2016-04-05
2016-01-1446
According to the U.S. National Highway Traffic Safety Administration, 743 pedal cyclists were killed and 48,000 were injured in motor vehicle crashes in 2013. As a novel active safety equipment to mitigate bicyclist crashes, bicyclist Pre-Collision Systems (PCSs) are being developed by many vehicle manufacturers. Therefore, developing equipment for evaluating bicyclist PCS is essential. This paper describes the development of a bicycle carrier for carrying the surrogate bicyclist in bicyclist PCS testing. An analysis on the United States national crash databases and videos from TASI 110 car naturalistic driving database was conducted to determine a set of most common crash scenarios, the motion speed and profile of bicycles. The bicycle carrier was designed to carry or pull the surrogate bicyclist for bicycle PCS evaluation. The carrier is a platform with a 4 wheel differential driving system.
Technical Paper

Novel Approach to Integration of Turbocompounding, Electrification and Supercharging Through Use of Planetary Gear System

2018-04-03
2018-01-0887
Technologies that provide potential for significant improvements in engine efficiency include, engine downsizing/downspeeding (enabled by advanced boosting systems such as an electrically driven compressor), waste heat recovery through turbocompounding or organic Rankine cycle and 48 V mild hybridization. FEV’s Integrated Turbocompounding/Waste Heat Recovery (WHR), Electrification and Supercharging (FEV-ITES) is a novel approach for integration of these technologies in a single unit. This approach provides a reduced cost, reduced space claim and an increase in engine efficiency, when compared to the independent integration of each of these technologies. This approach is enabled through the application of a planetary gear system. Specifically, a secondary compressor is connected to the ring gear, a turbocompounding turbine or organic Rankine cycle (ORC) expander is connected to the sun gear, and an electric motor/generator is connected to the carrier gear.
Technical Paper

Minimum Cycle Requirement for SAE J2562

2014-04-01
2014-01-0073
SAE J2562 defines the background, apparatus and the directions for modifying the Scaled Base Load Sequence for a given a wheel rated load for a wheel design. This practice has been conducted on multiple wheel designs and over one hundred wheel specimens. All of the wheels were tested to fracture. Concurrently, some of the wheel designs were found to be unserviceable in prior or subsequent proving grounds on-vehicle testing. The remainder of the wheel designs have sufficient fatigue strength to sustain the intended service for the life of the vehicle. This is termed serviceable. Using the empirical data with industry accepted statistics a minimum requirement can be projected, below which a wheel design will likely have samples unserviceable in its intended service. The projections of serviceability result in a recommendation of a minimum cycle requirement for SAE J2562 Ballasted Passenger Vehicle Load Sequence.
Technical Paper

Finite Difference Heat Transfer Model of a Steel-clad Aluminum Brake Rotor

2005-10-09
2005-01-3943
This paper describes the heat transfer model of a composite aluminum brake rotor and compares the predicted temperatures to dynamometer measurements taken during a 15 fade stop trial. The model is based on meshed surface geometry which is simulated using RadTherm software. Methods for realistically modeling heat load distribution, surface rotation, convection cooling and radiation losses are also discussed. A comparison of the simulation results to the dynamometer data shows very close agreement throughout the fade stop trial. As such, the model is considered valid and will be used for further Steel Clad Aluminum (SCA) rotor development.
Technical Paper

Order Separation Using Multiple Tachometers and the TVDFT Order Tracking Method

2005-05-16
2005-01-2265
An automobile and a tracked military vehicle were instrumented with multiple tachometers, one for each drive wheel/sprocket and operated with accelerometers mounted at suspension, chassis, and powertrain locations on the vehicles. The Time Variant Discrete Fourier Transform, TVDFT, order tracking method was then used to extract the order tracks and operating shapes estimated based on each tachometer. It is shown that under some conditions a different operating shape is excited by each of the wheels/sprockets simultaneously. This is due to the asymmetries present in the vehicles. The strengths of the TVDFT order tracking method are shown for this type of analysis, which is difficult due to the closeness, within 0.001 orders, and crossing of the orders. Benefits of using multiple tachometers and advanced order tracking methods become apparent for solving a class of noise and vibration problems.
Technical Paper

Increasing the Effective AKI of Fuels Using Port Water Injection (Part II)

2022-03-29
2022-01-0434
This is the second part of a study on using port water injection to quantifiably enhance the knock performance of fuels. In the United States, the metric used to quantify the anti-knock performance of fuels is Anti Knock Index (AKI), which is the average of Research Octane Number (RON) and Motor Octane Number (MON). Fuels with higher AKI are expected to have better knock mitigating properties, enabling the engine to run closer to Maximum Brake Torque (MBT) spark timing in the knock limited region. The work done in part I of the study related increased knock tolerance due to water injection to increased fuel AKI, thus establishing an ‘effective AKI’ due to water injection. This paper builds upon the work done in part I of the study by repeating a part of the test matrix with Primary Reference Fuels (PRFs), with iso-octane (PRF100) as the reference fuel and lower PRFs used to match its performance with the help of port water injection.
Technical Paper

Post-Processing Analysis of Large Channel Count Order Track Tests and Estimation of Linearly Independent Operating Shapes

1999-05-17
1999-01-1827
Large channel count data acquisition systems have seen increasing use in the acquisition and analysis of rotating machinery, these systems have the ability to generate very large amounts of data for analysis. The most common operating measurement made on powertrains or automobiles on the road or on dynamometers has become the order track measurement. Order tracking analysis can generate a very large amount of information that must be analyzed, both due to the number of channels and orders tracked. Analysis methods to efficiently analyze large numbers of Frequency Response Function (FRF) measurements have been developed and used over the last 20 years in many troubleshooting applications. This paper develops applications for several FRF based analysis methods as applied for efficient analysis of large amounts of order track data.
Technical Paper

Measurement of Dynamic Properties of Automotive Shock Absorbers for NVH

1999-05-17
1999-01-1840
This paper describes a project on the dynamic characterization of automotive shock absorbers. The objective was to develop a new testing and analysis methodology for obtaining equivalent linear stiffness and damping of the shock absorbers for use in CAE-NVH low- to- mid frequency chassis models. Previous studies using an elastomer test machine proved unsuitable for testing shocks in the mid-to-high frequency range where the typical road input displacements fall within the noise floor of the elastomer machine. Hence, in this project, an electrodynamic shaker was used for exciting the shock absorbers under displacements less than 0.05 mm up to 500 Hz. Furthermore, instead of the swept sine technique, actual road data were used to excite the shocks. Equivalent linear spring-damper models were developed based on least-squares curve-fitting of the test data.
Technical Paper

Sensor Fusion Approach for Dynamic Torque Estimation with Low Cost Sensors for Boosted 4-Cylinder Engine

2021-04-06
2021-01-0418
As the world searches for ways to reduce humanity’s impact on the environment, the automotive industry looks to extend the viable use of the gasoline engine by improving efficiency. One way to improve engine efficiency is through more effective control. Torque-based control is critical in modern cars and trucks for traction control, stability control, advanced driver assistance systems, and autonomous vehicle systems. Closed loop torque-based engine control systems require feedback signal(s); indicated mean effective pressure (IMEP) is a useful signal but is costly to measure directly with in-cylinder pressure sensors. Previous work has been done in torque and IMEP estimation using crankshaft acceleration and ion sensors, but these systems lack accuracy in some operating ranges and the ability to estimate cycle-cycle variation.
X