Refine Your Search

Topic

Author

Search Results

Journal Article

A Method for Vibration and Harshness Analysis Based on Indoor Testing of Automotive Suspension Systems

2010-04-12
2010-01-0639
The paper presents a method for the indoor testing of road vehicle suspension systems. A suspension is positioned on a rotating drum which is located in the Laboratory for the Safety of Transport at Politecnico di Milano. Special six-axis load cells have been designed and used for measuring the forces/moments acting at each suspension-chassis joints. The forces/moments, wheel accelerations, displacements are measured up to 100 Hz. Two different types of test can be performed. The tire/wheel unbalance effect on the suspension system behavior (Vibration and Harshness, VH) has been analyzed by testing the suspension system from zero to the vehicle maximum speed on a flat surface and by monitoring the forces transmitted to the chassis. In the second kind of test, the suspension system has been excited as the wheel passes over different cleats fixed on the drum.
Journal Article

Fluid Dynamic and Acoustic Optimization Methodology of a Motorbike Intake Airbox Using Multilevel Numerical CFD Models and Experimental Validation Tests

2013-09-08
2013-24-0070
In this work a multilevel CFD analysis have been applied for the design of an intake air-box with improved characteristics of noise reduction and fluid dynamic response. The approaches developed and applied for the optimization process range from the 1D to fully 3D CFD simulation, exploring hybrid approaches based on the integration of a 1D model with quasi-3D and 3D tools. In particular, the quasi-3D strategy is exploited to investigate several configurations, tailoring the best trade-off between noise abatement at frequencies below 1000 Hz and optimization of engine performances. Once the best configuration has been defined, the 1D-3D approach has been adopted to confirm the prediction carried out by means of the simplified approach, studying also the impact of the new configuration on the engine performances.
Journal Article

A Scale Adaptive Filtering Technique for Turbulence Modeling of Unsteady Flows in IC Engines

2015-04-14
2015-01-0395
Swirling flows are very dominant in applied technical problems, especially in IC engines, and their prediction requires rather sophisticated modeling. An adaptive low-pass filtering procedure for the modeled turbulent length and time scales is derived and applied to Menter' original k - ω SST turbulence model. The modeled length and time scales are compared to what can potentially be resolved by the computational grid and time step. If the modeled scales are larger than the resolvable scales, the resolvable scales will replace the modeled scales in the formulation of the eddy viscosity; therefore, the filtering technique helps the turbulence model to adapt in accordance with the mesh resolution and the scales to capture.
Journal Article

Friction Estimation at Tire-Ground Contact

2015-04-14
2015-01-1594
The friction estimation at the tire-ground contact is crucial for the active safety of vehicles. Friction estimation is a key problem of vehicle dynamics and the ultimate solution is still unknown. However the proposed approach, based on a simple idea and on a simple hardware, provides an actual solution. The idea is to compare the tire characteristic at a given friction (nominal characteristic) with the actual characteristic that the tire has while running. The comparison among these two characteristics (the nominal one and the actual one) gives the desired friction coefficient. The friction coefficient is expressed in vector form and a number of running parameters are identified. The mentioned comparison is an efficient but complex algorithm based on a mathematical formulation of the tire characteristic. The actual tire characteristic is somehow measured in real time by a relatively simple smart wheel which is able to detect the three forces and the three moments acting at the hub.
Journal Article

CFD Investigation of the Effect of Fluid-Structure Interaction on the Transmission Loss of ICE Silencers

2016-06-15
2016-01-1815
In the last decades numerical simulations have become reliable tools for the design and the optimization of silencers for internal combustion engines. Different approaches, ranging from simple 1D models to detailed 3D models, are nowadays commonly applied in the engine development process, with the aim to predict the acoustic behavior of intake and exhaust systems. However, the acoustic analysis is usually performed under the hypothesis of infinite stiffness of the silencer walls. This assumption, which can be regarded as reasonable for most of the applications, can lose validity if low wall thickness are considered. This consideration is even more significant if the recent trends in the automotive industry are taken into account: in fact, the increasing attention to the weight of the vehicle has lead to a general reduction of the thickness of the metal sheets, due also to the adoption of high-strength steels, making the vibration of the components a non negligible issue.
Journal Article

Fluid Dynamic Optimization of a Moto3TM Engine by Means of 1D and 1D-3D Simulations

2016-04-05
2016-01-0570
In this work an integration between a 1D code (Gasdyn) with a CFD code (OpenFOAM®) has been applied to improve the performance of a Moto3TM engine. The four-stroke, single cylinder S.I. engine was modeled, in order to predict the wave motion in the intake and exhaust systems and study how it affects the cylinder gas exchange process. The engine considered was characterized by having an air induction system with integrated filter cartridge, air-box and intake runner, resulting in a complex air-path form the intake mouth to the intake valves, which presents critical aspects when a 1D modeling is addressed. This paper presents a combined and integrated simulation, in which the intake systems was modeled as a 3D geometry whereas the exhaust system, which presented a simpler geometry, was modeled by means of a 1D approach.
Technical Paper

Optimization of Diesel Engine and After-treatment Systems for a Series Hybrid Forklift Application

2020-04-14
2020-01-0658
This paper investigates an optimal design of a diesel engine and after-treatment systems for a series hybrid electric forklift application. A holistic modeling approach is developed in GT-Suite® to establish a model-based hardware definition for a diesel engine and an after-treatment system to accurately predict engine performance and emissions. The used engine model is validated with the experimental data. The engine design parameters including compression ratio, boost level, air-fuel ratio (AFR), injection timing, and injection pressure are optimized at a single operating point for the series hybrid electric vehicle, together with the performance of the after-treatment components. The engine and after-treatment models are then coupled with a series hybrid electric powertrain to evaluate the performance of the forklift in the standard VDI 2198 drive cycle.
Journal Article

Experimental Characterization of the Lateral Response of a Tire under Hydroplaning Condition

2012-04-16
2012-01-0769
Hydroplaning represents a threat for riding safety since a wedge of water generated at the tire-road interface can lift tires from the ground thus preventing the development of tangential contact forces. Under this condition directionality and stability of the vehicle can be seriously compromised. The paper aims at characterizing the tire lateral response while approaching the hydroplaning speed: several experimental tests were carried out on a special test track covered with a 8-mm high water layer using a vehicle equipped with a dynamometric hub on the front left wheel. A series of swept sine steer maneuvers were performed increasing the vehicle speed in order to reach a full hydroplaning condition. Variations of tire cornering stiffness and relaxation length were investigated while the vehicle approaches the hydroplaning speed. Experimental tests stated that a residual capability of generating lateral forces is still present also close to the full hydroplaning condition.
Journal Article

Development of an ESP Control Logic Based on Force Measurements Provided by Smart Tires

2013-04-08
2013-01-0416
The present paper investigates possible enhancement of ESP performance associated with the use of smart tires. In particular a novel control logic based on a direct feedback on the longitudinal forces developed by the four tires is considered. The control logic was developed using a simulation tool including a 14 dofs vehicle model and a smart tires emulator. Performance of the control strategy was evaluated in a series of handling maneuvers. The same maneuvers were performed on a HiL test bench interfacing the same vehicle model with a production ESP ECU. Results of the two logics were analyzed and compared.
Journal Article

Towards the LES Simulation of IC Engines with Parallel Topologically Changing Meshes

2013-04-08
2013-01-1096
The implementation and the combination of advanced boundary conditions and subgrid scale models for Large Eddy Simulation (LES) in the multi-dimensional open-source CFD code OpenFOAM® are presented. The goal is to perform reliable cold flow LES simulations in complex geometries, such as in the cylinders of internal combustion engines. The implementation of a boundary condition for synthetic turbulence generation upstream of the valve port and of the compressible formulation of the Wall-Adapting Local Eddy-viscosity sgs model (WALE) is described. The WALE model is based on the square of the velocity gradient tensor and it accounts for the effects of both the strain and the rotation rate of the smallest resolved turbulent fluctuations and it recovers the proper y₃ near-wall scaling for the eddy viscosity without requiring dynamic procedure; hence, it is supposed to be a very reliable model for ICE simulation.
Technical Paper

Integrated Vehicle and Driveline Modeling

2007-04-16
2007-01-1583
In the last years automotive industry has shown a growing interest in exploring the field of vehicle dynamic control, improving handling performances and safety of the vehicle, and actuating devices able to optimize the driving torque distribution to the wheels. These techniques are defined as torque vectoring. The potentiality of these systems relies on the strong coupling between longitudinal and lateral vehicle dynamics established by tires and powertrain. Due to this fact the detailed (and correct) simulation of the dynamic behaviour of the driveline has a strong importance in the development of these control systems, which aim is to optimize the contact forces distribution. The aim of this work is to build an integrated vehicle and powertrain model in order to provide a proper instrument to be used in the development of such systems, able to reproduce the dynamic interaction between vehicle and driveline and its effects on the handling performances.
Technical Paper

Modeling Interior Noise in Off-Highway Trucks using Statistical Energy Analysis

2009-05-19
2009-01-2239
The objective of this project was to model and study the interior noise in an Off-Highway Truck cab using Statistical Energy Analysis (SEA). The analysis was performed using two different modeling techniques. In the first method, the structural members of the cab were modeled along with the panels and the interior cavity. In the second method, the structural members were not modeled and only the acoustic cavity and panels were modeled. Comparison was done between the model with structural members and without structural members to evaluate the necessity of modeling the structure. Correlation between model prediction of interior sound pressure and test data was performed for eight different load conditions. Power contribution analysis was performed to find dominant paths and 1/3rd octave band frequencies.
Technical Paper

Modeling, Design and Validation of an Exhaust Muffler for a Commercial Telehandler

2009-05-19
2009-01-2047
This paper describes the design, development and validation of a muffler for reducing exhaust noise from a commercial tele-handler. It also describes the procedure for modeling and optimizing the exhaust muffler along with experimental measurement for correlating the sound transmission loss (STL). The design and tuning of the tele-handler muffler was based on several factors including overall performance, cost, weight, available space, and ease of manufacturing. The analysis for predicting the STL was conducted using the commercial software LMS Virtual Lab (LMS-VL), while the experimental validation was carried out in the laboratory using the two load setup. First, in order to gain confidence in the applicability of LMS-VL, the STL of some simple expansion mufflers with and without extended inlet/outlet and perforations was considered. The STL of these mufflers were predicted using the traditional plane wave transfer matrix approach.
Technical Paper

On the Impact of the Maximum Available Tire-Road Friction Coefficient Awareness in a Brake-Based Torque Vectoring System

2010-04-12
2010-01-0116
Tire-road interaction is one of the main concerns in the design of control strategies for active/semi-active differentials oriented to improve handling performances of a vehicle. In particular, the knowledge of the friction coefficient at the tire-road interface is crucial for achieving the best performance in any working condition. State observers and estimators have been developed at the purpose, based on the measurements traditionally carried out on board vehicle (steer angle, lateral acceleration, yaw rate, wheels speed). However, until today, the problem of tire-road friction coefficient estimation (and especially of its maximum value) has not completely been solved. Thus, active control systems developed so far rely on a driver manual selection of the road adherence condition (anyway characterized by a rough and imprecise quality) or on a conservative tuning of the control logic in order to ensure vehicle safety among different tire-road friction coefficients.
Technical Paper

Snow surface model for tire performance simulation

2000-06-12
2000-05-0252
New tire model is under development in European Commission research project called VERT (Vehicle Road Tire Interaction, BRPR-CT97-0461). The objective of the project is to create a physical model for tire/surface contact simulation. One of the subtasks has been to develop a method for snow surface characterization. The aim is simulate winter tire on snow surface with FEM software. This kind of simulation has been earlier done with snow model parameters from laboratory experiments. A snow shear box device has been developed in Helsinki University of Technology to measure mechanical properties of snow in field conditions. Both shear and compression properties can be measured with the device. With the device, a large number of snow measurements have been done at the same time with VERT winter tire testing in Nokian Tyres'' test track in Ivalo Finland. Measurement data have been postprocessed afterwards and parameters for material models have been evaluated.
Technical Paper

Design and Construction of a Test Rig for Assessing Tyre Characteristics at Rollover

2002-07-09
2002-01-2077
The paper presents a new test rig (named RuotaVia) composed basically by a drum (2,6 m diameter), providing a running contact surface for vehicle wheels. A number of measurements on either full vehicles or vehicle sub-systems (single suspension system or single tyre) can be performed. Tire characteristics influencing rollover can be assessed. The steady-state maximum loads are as follows: Radial: 100kN, tangential: 100kN, lateral (axial with respect to the drum): 100kN. The superstructure carrying a measuring hub can excite the wheel under test up to 20 Hz in lateral and vertical directions. The steer angle range is ± 25 deg, the camber range is ± 80 deg. The minimum eigenfrequency of the drum is higher than 90 Hz and its maximum tangential speed is 440 km/h.
Technical Paper

LES and RNG Turbulence Modeling in DI Diesel Engines

2003-03-03
2003-01-1069
The one-equation subgrid scale model for the Large Eddy Simulation (LES) turbulence model has been compared to the popular k-ε RNG turbulence model in very different sized direct injection diesel engines. The cylinder diameters of these engines range between 111 and 200 mm. This has been an initial attempt to study the effect of LES in diesel engines without any modification to the combustion model being used in its Reynolds-averaged Navier-Stokes (RANS) form. Despite some deficiencies in the current LES model being used, it already gave much more structured flow field with approximately the same kind of accuracy in the cylinder pressure predictions than the k-ε RNG turbulence model.
Technical Paper

A 2D Model for Tractor Tire-Soil Interaction: Evaluation of the Maximum Traction Force and Comparison with Experimental Results

2011-04-12
2011-01-0191
The paper investigates the interaction between soil and tractor tires through a 2D numerical model. The tire is schematized as a rigid ring presenting a series of rigid tread bars on the external circumference. The outer profile of the tire is divided into a series of elements, each one able to exchange a normal and a tangential contact force with the ground. A 2D soil model was developed to compute the forces at the ground-tire interface: the normal force is determined on the basis of the compression of the soil generated by the sinking of the tire. The soil is modeled through a layer of springs characterized by two different stiffness for the loading (lower stiffness) and unloading (higher stiffness) condition. This scheme allows to introduce a memory effect on the soil which results stiffer and keeps a residual sinking after the passage of the tire. The normal contact force determines the maximum value of tangential force provided before the soil fails.
Technical Paper

Development of a Control Strategy for a Suspension System with an Active Variable Kinematics

2011-04-12
2011-01-0739
Active and semi-active suspension systems are widely diffused into the automotive industry. Most of the proposed devices try to achieve a better compromise between handling and comfort requirements by replacing traditional springs, shock absorbers and antiroll bars with active or semi-active actuators allowing to change suspension stiffness and damping according to a suitable control strategy. An alternative way for controlling passenger car suspensions is proposed in this paper. Traditional passive springs and dampers are maintained, while the geometry of the suspension and thus its kinematics is actively varied. By changing the suspension geometry, spring and damper rates are in fact varied, this modifying the vertical load on the tire and/or the vehicle height from the ground.
Technical Paper

Lightweight Design of a Racing Motorcycle Wheel

2016-04-05
2016-01-1576
Mass minimization is a key objective for the design of racing motorcycle wheels. The structural optimization of a front motorcycle wheel is presented in the paper. Topology Optimization has been employed for deriving optimized structural layouts. The minimum compliance problem has been solved, symmetry and periodicity constraints have been introduced. The wheel has been optimized by considering several loading conditions. Actual loads have been measured during track tests by means of a special measuring wheel. The forces applied by the tire to the rim have been introduced in an original way. Different solutions characterized by different numbers of spokes have been analyzed and compared. The actual racing wheel has been further optimized accounting for technological constraints and the mass has been reduced down to 2.9 kilograms.
X