Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Investigations of Atkinson Cycle Converted from Conventional Otto Cycle Gasoline Engine

2016-04-05
2016-01-0680
Hybrid electric vehicles (HEVs) are considered as the most commercial prospects new energy vehicles. Most HEVs have adopted Atkinson cycle engine as the main drive power. Atkinson cycle engine uses late intake valve closing (LIVC) to reduce pumping losses and compression work in part load operation. It can transform more heat energy to mechanical energy, improve engine thermal efficiency and decrease fuel consumption. In this paper, the investigations of Atkinson cycle converted from conventional Otto cycle gasoline engine have been carried out. First of all, high geometry compression ratio (CR) has been optimized through piston redesign from 10.5 to 13 in order to overcome the intrinsic drawback of Atkinson cycle in that combustion performance deteriorates due to the decline in the effective CR. Then, both intake and exhaust cam profile have been redesigned to meet the requirements of Atkinson cycle engine.
Technical Paper

The Fluid Induced Vibration Analysis on an Integrated Exhaust Manifold

2013-04-08
2013-01-0937
With its advantages on cost and performance, the integrated exhaust manifold (casting with the turbine) is being used on more vehicles by auto makers. Generally, when compared with the divided exhaust manifold, the integrated exhaust manifold stands for higher vibratory excitation from gas dynamics. In this paper, the gas dynamics excitation has been computed through the GD (gas dynamics) software GT-Power which calculates the exhaust pipe surface pressure, and CFD code Star-CCM+ which calculates the turbine blade force. And the response of manifold has been solved under this excitation. On the other hand, the mechanical excitation has been computed through the MBD (multi-body dynamics) platform AVL-Excite-PU, and the responses under the gas excitation plus the mechanical load have been studied in order to analyze the effects of the fluid excitation on an integrated manifold.
Technical Paper

Simulation and Experimental Research on Compression Release Engine Brake Performance

2018-04-03
2018-01-1382
A 3D grid model of engine brake is established for an automobile engine. The dynamic compression release braking process is simulated by using this model. In the process of engine braking, the movement of valve and piston causes changes of the internal flow field of the engine. In this paper, the movement of valve and piston were defined by using the dynamic grid technology, so that the numerical simulation is closer to the actual situation via the updating of grid. Based on the relevant parameters of compression release engine brake (including the opening of the exhaust valve, the engine speed and the exhaust back pressure), the pressure and power of the compression release braking system were simulated under the conditions of multiple operating conditions and experimental verification was carried out. The results showed that the braking works of the compression release engine brake are mainly from the compression stroke and the exhaust stroke.
X