Refine Your Search

Topic

Author

Search Results

Video

Catalyzed Particulate Filter Passive Oxidation Study with ULSD and Biodiesel Blended Fuel

2012-06-18
The development of PM and NOx reduction system with the combination of DOC included DPF and SCR catalyst in addition to the AOC sub-assembly for NH3 slip protection is described. DPF regeneration strategy and manual regeneration functionality are introduced with using ITH, HCI device on the EUI based EGR, VGT 12.3L diesel engine at the CVS full dilution tunnel test bench. With this system, PM and NOx emission regulation for JPNL was satisfied and DPF regeneration process under steady state condition and transient condition (JE05 mode) were successfully fulfilled. Manual regeneration process was also confirmed and HCI control strategy was validated against the heat loss during transient regeneration mode. Presenter Seung-il Moon
Journal Article

Assessment of Multiple Injection Strategies in a Direct-Injection Hydrogen Research Engine

2009-06-15
2009-01-1920
Hydrogen is widely considered a promising fuel for future transportation applications for both, internal combustion engines and fuel cells. Due to their advanced stage of development and immediate availability hydrogen combustion engines could act as a bridging technology towards a wide-spread hydrogen infrastructure. Although fuel cell vehicles are expected to surpass hydrogen combustion engine vehicles in terms of efficiency, the difference in efficiency might not be as significant as widely anticipated [1]. Hydrogen combustion engines have been shown capable of achieving efficiencies of up to 45 % [2]. One of the remaining challenges is the reduction of nitric oxide emissions while achieving peak engine efficiencies. This paper summarizes research work performed on a single-cylinder hydrogen direct injection engine at Argonne National Laboratory.
Journal Article

Deterioration of B20 from Compression Ignition Engine Operation

2010-10-25
2010-01-2120
Biodiesel has been widely accepted as an alternative for fossil-derived diesel fuel for use in compression ignition (CI) engines. Poor oxidative stability and cold flow properties restrict the use of biodiesel beyond current B20 blend levels (20% biodiesel in 80% ULSD) for vehicle applications. Maintaining the properties of B20 as specified by ASTM D7476-08 is important because, once out of spec, B20 may cause injector coke formation, fuel filter plugging, increased exhaust emissions, and overall loss of engine performance. While the properties of fresh B20 may be within the specifications, under engine operating and longer storage conditions B20 could deteriorate. In a diesel engine, the fuel that goes to the injector and does not enter the cylinder is recycled back to the fuel tank. The re-circulated fuel returns to the fuel tank at an elevate temperature, which can cause thermal oxidation.
Journal Article

Properties of Butanol-Biodiesel-ULSD Ternary Mixtures

2010-10-25
2010-01-2133
The use of butanol as an alternative biofuel blend component for conventional diesel fuel has been under extensive investigation. However, some fuel properties such as cetane number and lubricity fall below the accepted values as described by the ASTM D 975 diesel specifications. Blending 10% butanol with #2 ULSD decreases the cetane number by 7% (from 41.6 to 39.0). At higher butanol blend levels, i.e., 20% v/v, the cetane number decrease cannot be compensated for; even with the addition of a 2000 ppm level commercial cetane improver. The decreased cetane number, or in other words, increased ignition delay, can be attributed to the increased blend level of low cetane butanol as well as the critical physical properties for better atomization of fuels during auto ignition such as viscosity. The kinematic viscosity dropped sharply with increasing butanol blend level up to 25 % v/v, then increased with further increase of butanol blend level.
Technical Paper

An Experimental Investigation on Aldehyde and Methane Emissions from Hydrous Ethanol and Gasoline Fueled SI Engine

2020-09-15
2020-01-2047
Use of ethanol as gasoline replacement can contribute to the reduction of nitrogen oxide (NOx) and carbon oxide (CO) emissions. Depending on ethanol production, significant reduction of greenhouse-gas emissions is possible. Concentration of certain species, such as unburned ethanol and acetaldehyde in the engine-out emissions are known to rise when ratio of ethanol to gasoline increases in the fuel. This research explores on hydrous ethanol fueled port-fuel injection (PFI) spark ignition (SI) engine emissions that contribute to photochemical formation of ozone, or so-called ozone precursors and the precursor of peroxyacetyl nitrates (PANs). The results are compared to engine operation on gasoline. Concentration obtained by FTIR gas analyzer, and mass-specific emissions of formaldehyde (HCHO), acetaldehyde (MeCHO) and methane (CH4) under two engine speed, four load and two spark advance settings are analyzed and presented.
Technical Paper

Investigation of Diesel-CNG RCCI Combustion at Multiple Engine Operating Conditions

2020-04-14
2020-01-0801
Past experimental studies conducted by the current authors on a 13 liter 16.7:1 compression ratio heavy-duty diesel engine have shown that diesel-Compressed Natural Gas (CNG) Reactivity Controlled Compression Ignition (RCCI) combustion targeting low NOx emissions becomes progressively difficult to control as the engine load is increased. This is mainly due to difficulty in controlling reactivity levels at higher loads. For the current study, CFD investigations were conducted in CONVERGE using the SAGE combustion solver with the application of the Rahimi mechanism. Studies were conducted at a load of 5 bar BMEP to validate the simulation results against RCCI experimental data. In the low load study, it was found that the Rahimi mechanism was not able to predict the RCCI combustion behavior for diesel injection timings advanced beyond 30 degCA bTDC. This poor prediction was found at multiple engine speed and load points.
Technical Paper

Experimental Investigation of the Compression Ignition Process of High Reactivity Gasoline Fuels and E10 Certification Gasoline using a High-Pressure Direct Injection Gasoline Injector

2020-04-14
2020-01-0323
Gasoline compression ignition (GCI) technology shows the potential to obtain high thermal efficiencies while maintaining low soot and NOx emissions in light-duty engine applications. Recent experimental studies and numerical simulations have indicated that high reactivity gasoline-like fuels can further enable the benefits of GCI combustion. However, there is limited empirical data in the literature studying the gasoline compression ignition process at relevant in-cylinder conditions, which are required for further optimizing combustion system designs. This study investigates the temporal and spatial evolution of the compression ignition process of various high reactivity gasoline fuels with research octane numbers (RON) of 71, 74 and 82, as well as a conventional RON 97 E10 gasoline fuel. A ten-hole prototype gasoline injector specifically designed for GCI applications capable of injection pressures up to 450 bar was used.
Journal Article

Impact of A/F Ratio on Ion Current Features Using Spark Plug with Negative Polarity

2008-04-14
2008-01-1005
The increasing interest and requirement for improved electronic engine control during the last few decades, has led to the implementation of several different sensor technologies. The process of utilizing the spark plug as a combustion probe to monitor the different combustion related parameters such as knock, misfire, Ignition timing, and air-fuel ratio have been the subject of research for some time now. The air-fuel ratio is one of the most important engine operating parameters that has an impact on the combustion process, engine-out emissions, fuel economy, indicated mean effective pressure and exhaust gas composition and temperature. Furthermore, air-fuel ratio affects the ion produced during flame kernel initiation and post flame propagation. In this paper, an investigation is made to determine the effect of air-fuel ratio on ion current, using gasoline and methane under different spark plug designs and engine operating conditions.
Journal Article

Study of Basic Injection Configurations using a Direct-Injection Hydrogen Research Engine

2009-04-20
2009-01-1418
The application of hydrogen (H2) as an internal combustion (IC) engine fuel has been under investigation for several decades. The favorable physical properties of hydrogen make it an excellent alternative fuel for fuel cells as well as IC engines and hence it is widely regarded as the energy carrier of the future. The potential of hydrogen as an IC engine fuel can be optimized by direct injection (DI) as it provides multiple degrees of freedom to influence the in-cylinder combustion processes and consequently the engine efficiency and exhaust emissions. This paper studies a single-hole nozzle and examines the effects of injection strategy on engine efficiency, combustion behavior and NOx emissions. The experiments for this study are done on a 0.5 liter single-cylinder research engine which is specifically designed for combustion studies and equipped with a cylinder head that allows side as well as central injector location.
Journal Article

Performance, Efficiency and Emissions Assessment of Natural Gas Direct Injection compared to Gasoline and Natural Gas Port-Fuel Injection in an Automotive Engine

2016-04-05
2016-01-0806
Interest in natural gas as a fuel for light-duty transportation has increased due to its domestic availability and lower cost relative to gasoline. Natural gas, comprised mainly of methane, has a higher knock resistance than gasoline making it advantageous for high load operation. However, the lower flame speeds of natural gas can cause ignitability issues at part-load operation leading to an increase in the initial flame development process. While port-fuel injection of natural gas can lead to a loss in power density due to the displacement of intake air, injecting natural gas directly into the cylinder can reduce such losses. A study was designed and performed to evaluate the potential of natural gas for use as a light-duty fuel. Steady-state baseline tests were performed on a single-cylinder research engine equipped for port-fuel injection of gasoline and natural gas, as well as centrally mounted direct injection of natural gas.
Journal Article

Performance of an IDI Engine Fueled with Fatty Acid Methyl Esters Formulated from Cotton Seeds Oils

2015-04-14
2015-01-0806
This study evaluates the performance of an indirect injection (IDI) diesel engine fueled with cotton seed biodiesel while assessing the engine's multi-fuel capability. Millions of tons of cotton seeds are available in the south of the US every year and approximately 10% of oil contained in the seeds can be extracted and transesterified. An investigation of combustion, emissions, and efficiency was performed using mass ratios of 20-50% cotton seed biodiesel (CS20 and CS50) in ultra-low sulfur diesel #2 (ULSD#2). Each investigation was run at 2400 rpm with loads of 4.2 - 6.3 IMEP and compared to the reference fuel ULDS#2. The ignition delay ranged in a narrow interval of 0.8-0.97ms across the blends and the heat release rate showed comparable values and trends for all fuel blends. The maximum volume averaged cylinder temperature increased by approximately 100K with each increase in 1 bar IMEP load but the maximum remained constants across the blends.
Technical Paper

Effect of Biodiesel (B-20) on Performance and Emissions in a Single Cylinder HSDI Diesel Engine

2008-04-14
2008-01-1401
The focus of this study is to determine the effect of using B-20 (a blend of 20% soybean methyl ester biodiesel and 80% ultra low sulfur diesel fuel) on the combustion process, performance and exhaust emissions in a High Speed Direct Injection (HSDI) diesel engine equipped with a common rail injection system. The engine was operated under simulated turbocharged conditions with 3-bar indicated mean effective pressure and 1500 rpm engine speed. The experiments covered a wide range of injection pressures and EGR rates. The rate of heat release trace has been analyzed in details to determine the effect of the properties of biodiesel on auto ignition and combustion processes and their impact on engine out emissions. The results and the conclusions are supported by a statistical analysis of data that provides a quantitative significance of the effects of the two fuels on engine out emissions.
Technical Paper

Evaluation of Injector Location and Nozzle Design in a Direct-Injection Hydrogen Research Engine

2008-06-23
2008-01-1785
The favorable physical properties of hydrogen (H2) make it an excellent alternative fuel for internal combustion (IC) engines and hence it is widely regarded as the energy carrier of the future. Hydrogen direct injection provides multiple degrees of freedom for engine optimization and influencing the in-cylinder combustion processes. This paper compares the results in the mixture formation and combustion behavior of a hydrogen direct-injected single-cylinder research engine using two different injector locations as well as various injector nozzle designs. For this study the research engine was equipped with a specially designed cylinder head that allows accommodating a hydrogen injector in a side location between the intake valves as well as in the center location adjacent to the spark plug.
Technical Paper

The Calculation of Mass Fraction Burn of Ethanol-Gasoline Blended Fuels Using Single and Two-Zone Models

2008-04-14
2008-01-0320
One-dimensional single-zone and two-zone analyses have been exercised to calculate the mass fraction burned in an engine operating on ethanol/gasoline-blended fuels using the cylinder pressure and volume data. The analyses include heat transfer and crevice volume effects on the calculated mass fraction burned. A comparison between the two methods is performed starting from the derivation of conservation of energy and the method to solve the mass fraction burned rates through the results including detailed explanation of the observed differences and trends. The apparent heat release method is used as a point of reference in the comparison process. Both models are solved using the LU matrix factorization and first-order Euler integration.
Technical Paper

Impact of Biodiesel Emission Products from a Multi-Cylinder Direct Injection Diesel Engine on Particulate Filter Performance

2009-04-20
2009-01-1184
As diesel emission regulations continue to increase, the use of exhaust aftertreatment systems containing, for example the diesel oxidation catalyst (DOC) and diesel particulate filter (DPF) will become necessary in order to meet these stringent emission requirements. The addition of a DOC and DPF in conjunction with utilizing biodiesel fuels requires extensive research to study the implications that biodiesel blends have on emissions as well as to examine the effect on aftertreatment devices. The proceeding work discusses results from a 2006 VM Motori four-cylinder 2.8L direct injection diesel engine coupled with a diesel oxidation catalyst and catalyzed diesel particulate filter. Tests were done using ultra low sulfur diesel fuel blended with 20% choice white grease biodiesel fuel to evaluate the effects of biodiesel emission products on the performance and effectiveness of the aftertreatment devices and the effect of low temperature combustion modes.
Technical Paper

Effect of Different Biodiesel Blends on Autoignition, Combustion, Performance and Engine-Out Emissions in a Single Cylinder HSDI Diesel Engine

2009-04-20
2009-01-0489
The effects of different blends of Soybean Methyl Ester (biodiesel) and ultra low sulfur diesel (ULSD) fuel: B-00 (ULSD), B-20, B-40, B-60, B-80 and B-100 (biodiesel); on autoignition, combustion, performance, and engine out emissions of different species including particulate matter (PM) in the exhaust, were investigated in a single-cylinder, high speed direct injection (HSDI) diesel engine equipped with a common rail injection system. The engine was operated at 1500 rpm under simulated turbocharged conditions at 5 bar IMEP load with varied injection pressures at a medium swirl of 3.77 w ithout EGR. Analysis of test results was done to determine the role of biodiesel percentage in the fuel blend on the basic thermodynamic and combustion processes under fuel injection pressures ranging from 600 bar to 1200 bar.
Technical Paper

On-Site DME Generation from Methanol for Pilot Injection in CI Engines

2003-10-27
2003-01-3198
Dual fuel (CI) engines provide an excellent means of maintaining high thermal efficiency and power while reducing emissions, particularly in situations where the primary fuel does not exhibit good auto-ignition characteristics. This is especially true of diesel engines operating on natural gas; usually in stationary applications such as distributed power generation. However, because two fuels are needed, the reliability of the engine is compromised. Therefore, this paper describes the first phase of a project that is to eventually manufacture dimethyl ether (DME) from natural gas and supply it to the pilot injector of a dual fuel engine. A chemical pilot plant has been built and operated, demonstrating an intermediate step in the production of DME from natural gas. DME is manufactured from methanol for pilot injection into a dual fuel engine operating with natural gas as the main fuel.
Technical Paper

HEUI Injector Modeling and ROI Experiments for High Injection Pressure of Diesel and Dimethyl Ether (DME)

2016-04-05
2016-01-0855
Dimethyl Ether (DME) is considered a clean alternative fuel to diesel due to its soot-free combustion characteristics and its capability to be produced from renewable energy sources rather than fossil fuels such as coal or petroleum. To mitigate the effect of strong wave dynamics on fuel supply lines caused due to the high compressibility of DME and to overcome its low lubricity, a hydraulically actuated electronic unit injector (HEUI) with pressure intensification was used. The study focuses on high pressure operation, up to 2000 bar, significantly higher than pressure ranges reported previously with DME. A one-dimensional HEUI injector model is built in MATLAB/SIMULINK graphical software environment, to predict the rate of injection (ROI) profile critical to spray and combustion characterization.
Technical Paper

Numerical Investigation of Spark Ignition Events in Lean and Dilute Methane/Air Mixtures Using a Detailed Energy Deposition Model

2016-04-05
2016-01-0609
It is beneficial but challenging to operate spark-ignition engines under highly lean and dilute conditions. The unstable ignition behavior can result in downgraded combustion performance in engine cylinders. Numerical approach is serving as a promising tool to identify the ignition requirements by providing insight into the complex physical/chemical phenomena. An effort to simulate the early stage of flame kernel initiation in lean and dilute fuel/air mixture has been made and discussed in this paper. The simulations are set to validate against laboratory results of spark ignition behavior in a constant volume combustion vessel. In order to present a practical as well as comprehensive ignition model, the simulations are performed by taking into consideration the discharge circuit analysis, the detailed reaction mechanism, and local heat transfer between the flame kernel and spark plug.
Technical Paper

Simulation of Dual-Fuel-CI and Single-Fuel-SI Engine Combustion Fueled with CNG

2016-04-05
2016-01-0789
With increasing interest to reduce the dependency on gasoline and diesel, alternative energy source like compressed natural gas (CNG) is a viable option for internal combustion engines. Spark-ignited (SI) CNG engine is the simplest way to utilize CNG in engines, but direct injection (DI) Diesel-CNG dual-fuel engine is known to offer improvement in combustion efficiency and reduction in exhaust gases. Dual-fuel engine has characteristics similar to both SI engine and diesel engine which makes the combustion process more complex. This paper reports the computational fluid dynamics simulation of both DI dual-fuel compression ignition (CI) and SI CNG engines. In diesel-CNG dual-fuel engine simulations and comparison to experiments, attention was on ignition delay, transition from auto-ignition to flame propagation and heat released from the combustion of diesel and gaseous fuel, as well as relevant pollutants emissions.
X