Refine Your Search

Topic

Author

Affiliation

Search Results

Video

Impact of Biodiesel on Particle Emissions and DPF Regeneration Management in a Euro5 Automotive Diesel Engine

2012-06-18
Biofuel usage is increasingly expanding thanks to its significant contribution to a well-to-wheel (WTW) reduction of greenhouse gas (GHG) emissions. In addition, stringent emission standards make mandatory the use of Diesel Particulate Filter (DPF) for the particulate emissions control. The different physical properties and chemical composition of biofuels impact the overall engine behaviour. In particular, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value (LHV). More specifically, the PM emissions and the related DPF regeneration strategy are clearly affected by biofuel usage due mainly to its higher oxygen content and lower low heating value, respectively. The particle emissions, in fact, are lower mainly because of the higher oxygen content. Subsequently less frequent regenerations are required.
Journal Article

Alternative Diesel Fuels Effects on Combustion and Emissions of an Euro5 Automotive Diesel Engine

2010-04-12
2010-01-0472
The present paper describes some results of a cooperative research project between GM Powertrain Europe and Istituto Motori of CNR aimed at studying the impact of FAME and GTL fuel blends on the performance, emissions and fuel consumption of the latest-generation automotive diesel engines. The investigation was carried out on the newly released GM 2.0L 4-cylinder “torque-controlled” Euro 5 diesel engine for PC application and followed previous tests on its Euro 4 version, in order to track the interaction between the alternative fuels and the diesel engine, as the technology evolves. Various blends of first generation biodiesels (RME, SME) and GTL with a reference diesel fuel were tested, notably B20, B50 and B100. The tests were done in a wide range of engine operation points for the complete characterization of the biodiesels performance in the NEDC cycle, as well as in full load conditions.
Journal Article

Alternative Diesel Fuels Characterization in Non-Evaporating and Evaporating Conditions for Diesel Engines

2010-05-05
2010-01-1516
This paper reports the study of the effects of alternative diesel fuel and the impact for the air-fuel mixture preparation. The injection process characterization has been carried out in a non-evaporative high-density environment in order to measure the fuel injection rate and the spatial and temporal distribution of the fuel. The injection and vaporization processes have been characterized in an optically accessible single cylinder Common Rail diesel engine representing evaporative conditions similar to the real engine. The tests have been performed by means of a Bosch second generation common rail solenoid-driven fuel injection system with a 7-holes nozzle, flow number 440 cc/30s @100bar, 148deg cone opening angle (minisac type). Double injection strategy (pilot+main) has been implemented on the ECUs corresponding to operative running conditions of the commercial EURO 5 diesel engine.
Journal Article

Reduction of Steady-State CFD HVAC Simulations into a Fully Transient Lumped Parameter Network

2014-05-10
2014-01-9121
Since transient vehicle HVAC computational fluids (CFD) simulations take too long to solve in a production environment, the goal of this project is to automatically create a lumped-parameter flow network from a steady-state CFD that solves nearly instantaneously. The data mining algorithm k-means is implemented to automatically discover flow features and form the network (a reduced order model). The lumped-parameter network is implemented in the commercial thermal solver MuSES to then run as a fully transient simulation. Using this network a “localized heat transfer coefficient” is shown to be an improvement over existing techniques. Also, it was found that the use of the clustering created a new flow visualization technique. Finally, fixing clusters near equipment newly demonstrates a capability to track localized temperatures near specific objects (such as equipment in vehicles).
Journal Article

Analysis of Nozzle Coking Impact on Emissions and Performance of a Euro5 Automotive Diesel Engine

2013-09-08
2013-24-0127
The present paper reassumes the results of an experimental study focused on the effects of the nozzle injector's coking varying the flow number (FN); the performance and emissions of an automotive Euro5 diesel engine have been analyzed using diesel fuel. As the improvement of the diesel engine performance requires a continuous development of the injection system and in particular of the nozzle design, in the last years the general trend among OEMs is lowering nozzle flow number and, as a consequence, nozzle holes size. The study carried out moves from the consideration that a reduction of the nozzle holes diameter could increase the impact of their coking process. For this purpose, an experimental campaign has been realized, testing the engine in steady state in three partial load operating points, representative of the European homologation driving cycle, and in full load conditions.
Journal Article

Using 2d Infrared Imaging for the Analysis of Non-Conventional Fuels Combustion in a Diesel Engine

2015-04-14
2015-01-1646
The common realization of the necessity to reduce the use of mineral sources is promoting the use of alternative fuels. Big efforts are being made to replace petroleum derivatives in the internal combustion engines (ICEs). For this purpose it is mandatory to evaluate the behavior of non-conventional fuels in the ICEs. The optical diagnostics have proven to be a powerful tool to analyze the processes that take place inside the engine. In particular, 2d imaging in the infrared range can reveal new details about the effect of the fuel properties since this technique is still not very common. In this work, a comparison between commercial diesel fuel and two non-conventional fuels has been made in an optically accessible diesel engine. The non-conventional fuels are: the first generation biofuel Rapeseed Methyl Ester (RME) and an experimental blend of diesel and a fuel with high glycerol content (HG).
Journal Article

Extension and Validation of a 1D Model Applied to the Analysis of a Water Injected Turbocharged Spark Ignited Engine at High Loads and over a WLTP Driving Cycle

2017-09-04
2017-24-0014
The technique of liquid Water Injection (WI) at the intake port of downsized boosted SI engines is a promising solution to improve the knock resistance at high loads. In this work, an existing 1D engine model has been extended to improve its ability to simulate the effects of the water injection on the flame propagation speed and knock onset. The new features of the 1D model include an improved treatment of the heat subtracted by the water evaporation, a newly developed correlation for the laminar flame speed, explicitly considering the amount of water in the unburned mixture, and a more detailed kinetic mechanism to predict the auto-ignition characteristics of fuel/air/water mixture. The extended 1D model is validated against experimental data collected at different engine speeds and loads, including knock-limited operation, for a twin-cylinder turbocharged SI engine.
Technical Paper

Under-Expanded Gaseous Jets Characterization for Application in Direct Injection Engines: Experimental and Numerical Approach

2020-04-14
2020-01-0325
In the last years, increasing concerns about environmental pollution and fossil sources depletion led transport sectors research and development towards the study of new technologies capable to reduce vehicles emissions and fuel consumption. Direct-injection systems (DI) for internal combustion engines propose as an effective way to achieve these goals. This technology has already been adopted in Gasoline Direct Injection (GDI) engines and, lately, a great interest is growing for its use in natural gas fueling, so increasing efficiency with respect to port-fuel injection ones. Alone or in combination with other fuels, compressed natural gas (CNG) represents an attractive way to reduce exhaust emission (high H/C ratio), can be produced in renewable ways, and is more widespread and cheaper than gasoline or diesel fuels. Gas direct-injection process involves the occurrence of under-expanded jets in the combustion chamber.
Journal Article

Spray Formation and Combustion Analysis in an Optical Single Cylinder Engine Operating with Fresh and Aged Biodiesel

2011-04-12
2011-01-1381
The present paper describes the results of a cooperative research project between GM Powertrain Europe and Istituto Motori - CNR aimed at studying the impact of both fresh and highly oxidized RME at two levels of blending on spray formation and combustion in modern automotive diesel engines. The tests were performed on an optical single-cylinder engine sharing combustion system configuration with the 2.0L Euro5 GM diesel engine for passenger car application. Two blends (B50 and B100) blending were tested for both fresh and aged RME and compared with commercial diesel fuel in two different operating points typical of NEDC (1500rpm/2bar BMEP and 2000rpm/5bar BMEP). The experimental activity was devoted to an in-depth investigation of the spray density, breakup and penetration, mixture formation, combustion and soot formation, by means of optical techniques.
Journal Article

UV-Visible Spectroscopic Measurements of Dual-Fuel PCCI Engine

2011-09-11
2011-24-0061
In this work, optical diagnostics were applied in a transparent DI diesel engine equipped with the head of Euro5 commercial engine and the last generation CR injection system. In order to realize the PCCI combustion the injection of neat bio-ethanol was performed in the intake manifold and European commercial diesel fuel was injected into the cylinder. Different amounts of bio-ethanol were injected in order to create PCCI combustion with high levels of pre-combustion mixing, and to ensure low equivalence ratio and low flame temperatures too. UV-Visible imaging and spectroscopic measurements were performed in the engine in order to investigate the autoignition of the charge and the combustion process, respectively. In particular, the detection of the species involved in the combustion, like OH, HCO, and CH, was performed. The relevance of the radicals and species on PCCI were evaluated and compared with the data from thermodynamic analysis.
Journal Article

Optical Diagnostics of the Pollutant Formation in a CI Engine Operating with Diesel Fuel Blends

2011-06-09
2011-37-0003
To meet the future stringent emission standards, innovative diesel engine technology, exhaust gas after-treatment, and clean alternative fuels are required. Oxygenated fuels have showed a tendency to decrease internal combustion engine emissions. In the same time, advanced fuel injection modes can promote a further reduction of the pollutants at the exhaust without penalty for the combustion efficiency. One of the more interesting solutions is provided by the premixed low temperature combustion (LTC) mechanism jointly to lower-cetane, higher-volatility fuels. In this paper, to understand the role played by these factors on soot formation, cycle resolved visualization, UV-visible optical imaging and visible chemiluminescence were applied in an optically accessed high swirl multi-jets compression ignition engine. Combustion tests were carried out using three fuels: commercial diesel, a blend of 80% diesel with 20% gasoline (G20) and a blend of 80% diesel with 20% n-butanol (BU20).
Journal Article

An Experimental and Numerical Study of Diesel Spray Impingement on a Flat Plate

2017-03-28
2017-01-0854
Combustion systems with advanced injection strategies have been extensively studied, but there still exists a significant fundamental knowledge gap on fuel spray interactions with the piston surface and chamber walls. This paper is meant to provide detailed data on spray-wall impingement physics and support the spray-wall model development. The experimental work of spray-wall impingement with non-vaporizing spray characterization, was carried out in a high pressure-temperature constant-volume combustion vessel. The simultaneous Mie scattering of liquid spray and schlieren of liquid and vapor spray were carried out. Diesel fuel was injected at a pressure of 1500 bar into ambient gas at a density of 22.8 kg/m3 with isothermal conditions (fuel, ambient, and plate temperatures of 423 K). A Lagrangian-Eulerian modeling approach was employed to characterize the spray-gas and spray-wall interactions in the CONVERGETM framework by means of a Reynolds-Averaged Navier-Stokes (RANS) formulation.
Technical Paper

Root Cause Identification and Methods of Reducing Rear Window Buffeting Noise

2007-05-15
2007-01-2402
Rear Window Buffeting (RWB) is the low-frequency, high amplitude, sound that occurs in many 4-door vehicles when driven 30-70 mph with one rear window lowered. The goal of this paper is to demonstrate that the mechanisms of RWB are similar to that of sun roof buffeting and to describe the results of several actions suspected in contributing to the severity of RWB. Finally, the results of several experiments are discussed that may lend insight into ways to reduce the severity of this event. A detailed examination of the side airflow patterns of a small Sport Utility Vehicle (SUV) shows these criteria exist on a small SUV, and experiments to modify the SUV airflow pattern to reduce RWB are performed with varying degrees of success. Based on the results of these experiments, design actions are recommended that may result in the reduction of RWB.
Technical Paper

Enhancement of Engineering Education through University Competition-Based Events

2006-11-13
2006-32-0049
Engineering education at the University level is enhanced by competition-based projects. The SAE Clean Snowmobile Challenge is a prime example of how competition-based engineering education benefits the small engines industry and improves the engineering talent pool of the nation in general. For the past several decades, SAE has encouraged young engineers to compete in designing off road vehicles (Baja SAE ®), small race cars (Formula SAE ®), remote control airplanes (Aero Design ®), high mileage vehicles (Supermileage ®) and robots (Walking Robot ®). Now a new competition, the SAE Clean Snowmobile Challenge ™ (CSC), based on designing a cleaner and quieter snowmobile has led to a new path for young engineers to explore the challenges of designing engines that emit less pollution and noise. The paper will summarize the results of the most recent Clean Snowmobile Challenge 2006 and document the successes of the past seven years of the Challenge.
Technical Paper

Adequacy of Reduced Order Models for Model-Based Control in a Urea-SCR Aftertreatment System

2008-04-14
2008-01-0617
Model-based control strategies are important for meeting the dual objective of maximizing NOx reduction and minimizing NH3 slip in urea-SCR catalysts. To be implementable on the vehicle, the models should capture the essential behavior of the system, while not being computationally intensive. This paper discusses the adequacy of two different reduced order SCR catalyst models and compares their performance with a higher order model. The higher order model assumes that the catalyst has both diffusion and reaction kinetics, whereas the reduced order models contain only reaction kinetics. After describing each model, its parameter identification and model validation based on experiments on a Navistar I6 7.6L engine are presented. The adequacy of reduced order models is demonstrated by comparing the NO, NO2 and NH3 concentrations predicted by the models to their concentrations from the test data.
Technical Paper

Development of a 1-D CPF Model to Simulate Active Regeneration of a Diesel Particulate Filter

2009-04-20
2009-01-1283
A quasi-steady 1-dimensional computer model of a catalyzed particulate filter (CPF) capable of simulating active regeneration of the CPF via diesel fuel injection upstream of a diesel oxidation catalyst (DOC) or other means to increase the exhaust gas temperature has been developed. This model is capable of predicting gaseous species concentrations (HC's, CO, NO and NO2) and exhaust gas temperatures within and after the CPF, for given input values of gaseous species and PM concentrations before the CPF and other inlet variables such as time-varying temperature of the exhaust gas at the inlet of the CPF and volumetric flow rate of exhaust gas.
Technical Paper

Experimental and Numerical Investigation of High-Pressure Diesel Sprays with Multiple Injections at Engine Conditions

2010-04-12
2010-01-0179
A numerical methodology to simulate the high pressure spray evolution and the fuel-air mixing in diesel engines is presented. Attention is focused on the employed atomization model, a modified version of the Huh and Gosman, on the definition of a turbulence length scale limiter and of an adaptive local mesh refinement technique to minimize the result grid dependency. All the discussed models were implemented into Lib-ICE, which is a set of libraries and solvers, specifically tailored for engine simulations, which runs under the open-source CFD technology OpenFOAM®. To provide a comprehensive assessment of the proposed methodology, the validation procedure consisted into simulating, with a unique and coherent setup of all models, two different sets of experiments: a non-evaporating diesel fuel spray in a constant-volume vessel with optical access and an evaporating non-reacting diesel fuel spray in an optical engine.
Technical Paper

Iso-Octane Spray from a GDI Multi-Hole Injector under Non- and Flash Boiling Conditions

2017-10-08
2017-01-2319
GDI injection systems have become dominant in passenger cars due to their flexibility in managing and advantages in the fuel economy. With the increasingly stringent emissions regulations and concurrent requirements for enhanced engine thermal efficiency, a comprehensive characterization of the fuel spray behavior has become essential. Different engine loads produce in a variety of fuel supplying conditions that affect the air/fuel mixture preparation and influence the efficiency and pollutant production. The flash boiling is a particular state that occurs for peculiar thermodynamic conditions of the engine. It could strongly influence the mixture in sub-atmospheric environments with detrimental effects on emissions. In order to obtain an in-depth understanding of the flash boiling phenomena, it is necessary to study the parameters influencing the mixture formation and their appearance in diverse engine conditions.
Technical Paper

An Experimental Investigation of Alcohol/Diesel Fuel Blends on Combustion and Emissions in a Single-Cylinder Compression Ignition Engine

2016-04-05
2016-01-0738
UV-visible digital imaging and 2D chemiluminescence were applied on a single cylinder optically accessible compression ignition engine to investigate the effect of different alcohol/diesel fuel blends on the combustion mechanism. The growing request for greenhouse gas emission reduction imposes to consider the use of alternative fuels with the aim of both partially replacing the diesel fuel and reducing the fossil fuel consumption. To this purpose, the use of ABE (Acetone-Butanol-Ethanol) fermentation could represent an effective solution. Even if the different properties of alcohols compared to Diesel fuel limit the maximum blend concentration, low blend volume fractions can be used for improving combustion efficiency and exhaust emissions. The main objective of this study was to investigate the effects of the different fuel properties on the combustion evolution within the combustion chamber of a prototype optically accessible compression ignition engine.
Technical Paper

Performance, Gaseous and Particle Emissions of a Small Compression Ignition Engine Operating in Diesel/Methane Dual Fuel Mode

2016-04-05
2016-01-0771
This paper deals with the combustion behavior and exhaust emissions of a small compression ignition engine modified to operate in diesel/methane dual fuel mode. The engine is a three-cylinder, 1028 cm3 of displacement, equipped with a common rail injection system. The engine is provided with the production diesel oxidation catalyst. Intake manifold was modified in order to set up a gas injector managed by an external control unit. Experiments were carried out at different engine speeds and loads. For each engine operating condition, the majority of the total load was supplied by methane while a small percentage of the load was realized using diesel fuel; the latter was necessary to ignite the premixed charge of gaseous fuel. Thermodynamical analysis of the combustion phase was performed by in-cylinder pressure signal. Gas emissions and particulate matter were measured at the exhaust by commercial instruments.
X