Refine Your Search

Topic

Author

Search Results

Technical Paper

Fuel Injection Control Systems that Improve Three Way Catalyst Conversion Efficiency

1991-02-01
910390
A fuel control method to reduce the harmful exhaust gas from SI engines is proposed. As is well known, both the amplitude and the frequency of the limit cycle in a conventional air-fuel ratio control system are determined uniquely by parameters in the system. And this limits our making full use of the oxygen storage effect of TWC. A simple model of TWC reaction revealed the relationship between maximum conversion efficiency and both the amplitude and the frequency in a air fuel control system. It also revealed that TWC conversion efficiency attained to maximum levels when both the amplitude and the frequency of the limit cycle are selected so as to make full use of the oxygen storage effect of TWC. In order to achieve this, it is necessary to vary both the amplitude and the frequency arbitrarily.
Technical Paper

Development of Mitsubishi Flexible Fuel Vehicle

1991-02-01
910861
A flexible fuel vehicle (FFV) was evaluated through various tests for its potential as an alternative to the conventional gasoline vehicle. This paper presents the systems incorporated in the FFV and the test results. 50,000 mile emission durability tests were also performed and the potential of the FFV as a “Low Emission Vehicle” was assessed. As the result of extensive engineering work, we successfully developed a Galant FFV which exhibits very good durability and reliability. The emission control system which we have developed demonstrated that the vehicle has a good potential to comply with the California formaldehyde emission standard of 15 mg/mile. However, due to the large portion of unburnt methanol in the tail-pipe emissions, FFVs will have more difficulty than gasoline vehicles in meeting non-methane organic gas (NMOG) standards applicable to “Low Emission Vehicles”.
Technical Paper

A New Approach to Vehicle Interior Control

1991-02-01
910472
In order to meet increasing demands for safety and comfort in a vehicle compartment, automatic adjustment of seat, mirrors, steering wheel has been developed. The multiplex wiring system was constructed for the automatic adjustment of the cockpit elements to drivers preferred positions or to physique-matched settings based on ergonomic data. This paper describes the construction of the multiplex system and functions of automatic adjustment of the cockpit elements for comfortable driving position and better visibility.
Technical Paper

Control Method of Autonomous Vehicle Considering Compatibility of Riding Comfort and Vehicle Controllability

1990-08-01
901486
This paper describes a control strategy for autonomous vehicles in an intelligent vehicle/highway system. The control concept aims at the compatibility of passenger riding comfort and vehicle controllability. The main subject of this paper is lateral control of vehicles. In order to analyze riding comfort, we have experimented on the lateral riding comfort during a lane change. It was found that the riding comfort is mainly related to the jerk more than the acceleration, and that the trajectory pattern is important. According to the experimental results, a motion control system was designed. We found through the computer simulation and the experiment with an autonomous test vehicle that comfortable ride is realized along with system stability. Lastly, in order to apply this strategy to the longitudinal direction, we have experimented on the longitudinal acceleration with the test vehicle. The results shows that the same strategy is applicable to the longitudinal direction.
Technical Paper

Ventilation Characteristics of Modeled Compact Car Part 3 Airflow Velocity Distribution with Foot Mode

2010-04-12
2010-01-1065
Following the previous reports, ventilation characteristics in automobile was investigated by using a half-scale car model which was created by the Society of Automotive Engineers of Japan (JSAE). In the present study, the ventilation mode of the cabin was foot mode which was the ventilation method for using in winter season. Supplied air was blown from the supply openings under the dashboard to the rear of the model via the driver's foot region in this mode. The experiment was performed in order to obtain accurate data about the airflow properties equipped with particle image velocimetry (PIV). Our experimental data is to be shared as a standard model to assess the environment within automobiles. The data is also for use in computational fluid dynamics (CFD) benchmark tests in the development of automobile air conditioning, which enables high accuracy prediction of the interior environment of automobiles.
Technical Paper

Prediction of Occupant's Thermal Sensation under the Transient Environment in a Vehicle Compartment

2001-03-05
2001-01-0586
New numerical simulation system and experimental evaluation system has been developed to predict and evaluate occupant's thermal sensation in a passenger compartment in which environment is not steady and not uniform. Transitional effective temperature, which is new index of thermal sensation, is proposed and verified to correspond with subjects' thermal sensation votes. The simulation system has two advantage beside the prediction of thermal sensation; automatic generation of a computational model and coupling analysis of temperature including an analysis of temperature distribution inside a cabin, refrigerating cycle, solar radiation, and so on. It was verified that this system well predicts occupant's thermal sensation in a short time.
Technical Paper

Idling Stop System Coupled with Quick Start Features of Gasoline Direct Injection

2001-03-05
2001-01-0545
The gasoline direct injection engine starts significantly faster than a conventional engine. Fuel can be injected into the cylinder during the compression stroke at the same time of cranking start. When the spark plug ignites the mixture at the end of compression stroke, the engine has its first combustion, that is, the first combustion occurs within 0.2 sec after the start of cranking. This unique characteristic of quick startability has realized a idle stop system, which enables drivers to operate the vehicle in a natural manner.
Technical Paper

The 1.5-Liter Vertical Vortex Engine

1992-02-01
920670
A stratified-charge lean-burn engine is newly developed for the purpose of energy saving and carbon dioxide reduction to minimize the global warming. The engine, named MVV(Mitsubishi Vertical Vortex)engine, is based on the unique vertical vortex technology which realizes stable combustion even with lean mixture without any additional device. And it also has another feature of “all range air-to-fuel ratio feedback control system” utilizing linear air-to-fuel ratio sensor. This paper describes various technologies developed in this engine.
Technical Paper

A Particulate Trap System Using Electric Heating Regeneration for Small Trucks

1992-02-01
920141
A trap system has been developed that collects particulate using two small filters and regenerates alternately by electric heaters. This system contains a new idea in detection of the amount of particulate accumulation in the filters. The system counts the amount using a particulate accumulation rate map which is a function of the engine load and speed. In vehicle test with this trap system, the particulate collection efficiency and the regeneration efficiency were proved to be high enough for practical use. The test results also showed that the shutdown performance of the route switch valve greatly influenced the regeneration efficiency.
Technical Paper

A New Oxygen Storage Componented Oxygen Sensor for the Emission Reductions of the Three-Way Catalyst System

1990-10-01
902120
A new prototype oxygen storage componented oxygen sensor has been developed which shows significant emission reductions of a 3-way catalyst system. This sensor is composed of ceria, as an oxygen storage component and supported pellets as a buffer layer surrounding the protective coating of the sensor element. This sensor offers a more rapid response than conventional ones under lean and rich fuel mixture excursions, which is caused by CO or O2 electrode poisoning.
Technical Paper

Transient Characteristics of Torque Converter-Its Effect on Acceleration Performance of Auto-Trans. Equipped Vehicles

1990-02-01
900554
In previous studies(1)(2), the acceleration performance of vehicles equipped with torque converter has been analysed with the assumption that the converter characteristic was under continued steady-state. However, in case of sharp acceleration of the fluid flow in the converter from inactive flow condition, which would occur at wide-open throttle starting, it is not possible to accurately analyse the vehicle performance at immediately after starting if the converter characteristic is assumed to remain under steady-state condition. In this paper, the transient phenomenon in the converter is verified by applying the theory of angular momentum and the concept of energy balance through the converter elements providing with a dynamic-model for the driveline. The present study has clarified the effect of the transient converter characteristic, at sharp starting, on the acceleration performance.
Technical Paper

Development and Application of the Road Profile Measuring System

1993-03-01
930257
A high-performance road profile measuring system has developed. The measuring system consists of four laser displacement sensors and an optical speed sensor. It has the advantage of making high-accuracy measurements during a regular run, on a public road, and without any traffic restriction. The measurement is hardly affected by bouncing and pitching motions of the vehicle. The four displacement sensors are arranged at unequal intervals in the direction of vehicle. A road profile is calculated from sensor outputs. This paper describes not only the development of this unique measuring system but also its application to a vehicle behavior. Significant measurements of typical and peculiar public roads in Japan and Northern Europe by the measuring vehicle have been performed for the last few years. The features of these roads are described by the power spectrum densities and the profiles.
Technical Paper

Prediction Method of Cooling System Performance

1993-03-01
930146
This paper describes a method of predicting cooling performance in order to obtain the optimum design of the cooling system and front-end shape in the early stage of car development. This method consists of four calculation parts: thermal load on the cooling system, air flow through the engine compartment, heat dissipation by the heat exchangers and temperature distribution within the cooling system. It outputs the coolant, engine oil, automatic transmission fluid (A.T.F.) and charge air temperatures in exchange for the input of several car, power plant, drive train, exterior shape and cooling system specifications. For the calculations, in addition to theoretical formulas, several experimental formulas are introduced. This method verification is shown by presenting a few test cases for the respective calculation parts and the final solution.
Technical Paper

Heat Flow on Disc Brakes

1993-04-01
931084
This paper describes an experimental analysis of frictional heat generated between the pads and rotors of disc brakes, to determine the paths and amounts of heat flow. The brakes were applied repeatedly at a constant initial speed, deceleration and interval until brake temperature became saturated. Under these conditions we measured an unsteady temperature distribution state during a single application of the brakes, and also a saturated (quasi-stationary) temperature distribution during repeated braking. Heat flow was studied in six paths: heat conduction to the pad; heat convection to the air from the friction areas of the inner and outer disc, from the ventilating parts and from the tube section of the rotor; and heat conduction to the rotor flange section.
Technical Paper

A Study on a Simulation of a Head Form Impact Against Plastic Plates

1992-09-01
922085
A Finite Element Method (FEM) simulation was conducted to predict energy-absorbing characteristics in an impact of a head form against plastic plates. Static and dynamic material tests were conducted in order to determine material properties of the plastics. The properties were applied in an explicit FEM code. The FEM results were validated through the impact tests by the head form against the same plastic plates. It was proved that the FEM could simulate the test result well, when the precise material properties were introduced in the simulation. The method can be expected to be available to predict energy-absorbing characteristics during the impact by the head form against automobile plastic components such as shell portions of instrument panels.
Technical Paper

Development of Anti-Corrosion Steel Sheet Containing Copper for Automobile Body Parts

1994-03-01
940538
An investigation of anti-corrosion steel sheets (non-galvanized) which contain copper for automobile body parts has been conducted. Copper additives accelerate the formation of amorphous substrates. These substrates decrease the rate of corrosion. In order to retain the steel's formability and weldability, the contents of the alloying elements have been optimized. As a result, this newly developed steel sheet can be used for many different applications such as door sashes and door panels of mass produced cars. This paper describes the key properties of the newly developed steel sheet and additionally the mechanism of corrosion prevention, weldability, formability, and so on.
Technical Paper

Optimization of In-Cylinder Flow and Mixing for a Center-Spark Four-Valve Engine Employing the Concept of Barrel-Stratification

1994-03-01
940986
Flow and flame structure visualization and modeling were performed to clarify the characteristics of bulk flow, turbulence and mixing in a four-valve engine to adopt the lean combustion concept named “Barrel-Stratification” to the larger displacement center-spark four-valve engine. It was found that the partitions provided in the intake port and the tumble-control piston with a curved-top configuration were effective to enhance the lean combustion of such an engine. By these methods, the fuel distribution in the intake port and the in-cylinder bulk flow structure are optimized, so that the relatively rich mixture zone is arranged around the spark plug. The tumble-control piston also contributes to optimize the flow field structure after the distortion of tumble and to enable stable lean combustion.
Technical Paper

Shape Study for a Low-Air Resistance Air Deflector - The Second Report

1995-02-01
950633
We reported, in our first report1), the study of shapes of air deflectors that have strong yawing angle characteristics for the air resistance encountered when vehicles are running at high speed, taking into account the ambient wind. However, it is rarely the case that the optimum shape of air deflector, which was obtained and reported in our first report, is directly adopted for practical use. This paper reports the results of measurement tests on how the air resistance increases (worsens) when an air deflector is mounted on the cab of a vehicle: in the case when the air deflector was slightly changed on the same vehicle; or when the parameters of the vehicle (the height of the rear body) were changed for the same air deflector. We obtained the following results: Considerations and adjustments are required not to allow flows passing over upper and side surfaces of the air deflector to hit the front surface of the rear body.
Technical Paper

A Study on the Effects of the Active Yaw Moment Control

1995-02-01
950303
This paper presents a new torque distribution system-“Right/Left Torque Control System”, aimed at improving a vehicle's cornering properties by using yaw moment control. The torque transfer mechanisms of this system have been analyzed. Also, a yaw moment control algorithm using yaw rate feedback control has been designed. Next, vehicle cornering properties were evaluated using numerical simulation developed from data taken from an actual vehicle. As a result, improvements were achieved in the maneuverability and stability of a vehicle during cornering.
Technical Paper

Analysis of Stiffness of Truck Door Panel Effective Arrangement of Stiffeners for Improving Stiffness

1995-11-01
952678
Since it is more difficult for truck door panels to realize curvature than passenger car door panels, internal stiffeners are mounted between the outer panel and inner panel through the use of an adhesive for ensuring stiffness. For this reason, a problem occurs as to the proper placement of the stiffeners so as to effectively improve stiffness. By FEM prediction and experimentation, the following have been clarified: (1) Arrangement of stiffeners for effectively improving stiffness (2) Stiffness share of stiffeners and outer panel against stiffness
X