Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Lunar Base Life Support Failure Analysis and Simulation

2009-07-12
2009-01-2482
Dynamic simulation of the lunar outpost habitat life support was undertaken to investigate the impact of life support failures and to investigate possible responses. Some preparatory static analysis for the Lunar Outpost life support model, an earlier version of the model, and an investigation into the impact of Extravehicular Activity (EVA) were reported previously. (Jones, 2008-01-2184, 2008-01-2017) The earlier model was modified to include possible resupply delays, power failures, recycling system failures, and atmosphere and other material storage failures. Most failures impact the lunar outpost water balance and can be mitigated by reducing water usage. Food solids and nitrogen can be obtained only by resupply from Earth. The most time urgent failure is a loss of carbon dioxide removal capability. Life support failures might be survivable if effective operational solutions are provided in the system design.
Technical Paper

Crop Models for Varying Environmental Conditions

2002-07-15
2002-01-2520
New variable environment Modified Energy Cascade (MEC) crop models were developed for all the Advanced Life Support (ALS) candidate crops and implemented in SIMULINK. The MEC models are based on the Volk, Bugbee, and Wheeler Energy Cascade (EC) model and are derived from more recent Top-Level Energy Cascade (TLEC) models. The MEC models were developed to simulate crop plant responses to day-to-day changes in photosynthetic photon flux, photoperiod, carbon dioxide level, temperature, and relative humidity. The original EC model allowed only changes in light energy and used a less accurate linear approximation. For constant nominal environmental conditions, the simulation outputs of the new MEC models are very similar to those of earlier EC models that use parameters produced by the TLEC models. There are a few differences. The new MEC models allow setting the time for seed emergence, have more realistic exponential canopy growth, and have corrected harvest dates for potato and tomato.
Technical Paper

Air and Water System (AWS) Design and Technology Selection for the Vision for Space Exploration

2005-07-11
2005-01-2810
This paper considers system design and technology selection for the crew air and water recycling systems to be used in long duration human space exploration. The ultimate objective is to identify the air and water technologies likely to be used for the vision for space exploration and to suggest alternate technologies that should be developed. The approach is to conduct a preliminary systems engineering analysis, beginning with the Air and Water System (AWS) requirements and the system mass balance, and then to define the functional architecture, review the current International Space Station (ISS) technologies, and suggest alternate technologies.
Technical Paper

Integrated Systems Testing of Spacecraft

2007-07-09
2007-01-3144
How much integrated system level test should be performed on a spacecraft before it is launched? Although sometimes system test is minimized, experience shows that systems level testing should be thorough and complete. Reducing subsystem testing is a less dangerous way to save cost, since it risks finding problems later in system test, while cutting systems test risks finding them even later on orbit. Human-rated spacecraft test planning is informal, subjective, and inconsistent, and its extent is often determined by the decision maker's risk tolerance, decision-making style, and long-term or short-term view. Decisions on what to test should be guided by an overall mission cost-benefit analysis, similar to the risk analysis used to guide development efforts.
X