Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Ice Particle Impacts on a Flat Plate

2015-06-15
2015-01-2099
This work presents the results of an experimental study of ice particle impacts on a flat plate made of glass. The experiment was conducted at the Ballistics Impact Laboratory of NASA Glenn Research Center in 2014 and is part of the NASA fundamental research efforts to study physics of ice particles impact on a surface, in order to improve understanding of ice crystal ingestion and ice accretion inside jet engines. The ice particles, which were nominally spherical ranging in initial diameter between 1 and 3.5 millimeters, were accelerated to velocities from 20 to 130 m/s using a pressure gun. High speed cameras captured the pre-impact particle diameter and velocity data as well as the post-impact fragment data. The initial stages of ice particle breakup were captured and studied at 1,000,000 frames per second with a high speed camera imaging at a plane normal to the impact surface.
Technical Paper

Total Temperature Measurements in Icing Cloud Flows Using a Rearward Facing Probe

2019-06-10
2019-01-1923
This paper reports on temperature and humidity measurements from a series of ice-crystal icing tunnel experiments conducted in June 2018 at the Propulsion Systems Laboratory at the NASA Glenn Research Center. The tests were fundamental in nature and were aimed at investigating the icing processes on a two-dimensional NACA0012 airfoil subjected to artificially generated icing clouds. Prior to the tests on the airfoil, a suite of instruments, including total temperature and humidity probes, were used to characterize the thermodynamic flow and icing cloud conditions of the facility. Two different total temperature probes were used in these tests which included a custom designed rearward facing probe and a commercial self-heating total temperature probe. The rearward facing probe, the main total temperature probe, is being designed to reduce and mitigate the contaminating effects of icing and ingestion of ice crystals and water droplets at the probe’s inlet.
X