Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Viral Populations within the International Space Station's Internal Active Thermal Control System Ground Support and Potential Flight Hardware

2007-07-09
2007-01-3108
The Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) contains an aqueous, alkaline fluid (pH 9.5±0.5) that aids in maintaining a habitable environment for the crew. Because microbes have significant potential to cause disease, adverse effects on astronaut health, and microbe-induced corrosion, the presence of both bacteria and viruses within IATCS fluids is of concern. This study sought to detect and identify viral populations in IATCS samples obtained from the Kennedy Space Center as a first step towards characterizing and understanding potential risks associated with them. Samples were concentrated and viral nucleic acids (NA) extracted providing solutions containing 8.87-22.67 μg NA per mL of heat transfer fluid. After further amplification viral DNA and cDNA were then pooled, fluorescently labeled, and hybridized onto a Combimatrix panvira 12K microarray containing probes for ∼1,000 known human viruses.
Technical Paper

Operational Psychological Issues for Mars and other Exploration Missions

1997-07-01
972290
Long duration NASA-Mir program missions, and the planned International Space Station missions, have given impetus for NASA to implement an operational program of psychological preparation, monitoring, and support for its crews. For exploration missions measured in years, the importance of psychological issues increases exponentially beyond what is currently done. Psychologists' role should begin during the vehicle design and crew selection phases. Extensive preflight preparation must focus on individual and team adaptation, and leadership. Factors such as lack of resupply options and communication delays will alter in-flight monitoring and support capabilities, and require a more self-sufficient crew. Involvement in postflight recovery will also be necessry to ensure appropriate reintegration to the family and job.
Technical Paper

Demonstration of Oxygen Production on the Moon and Mars

1997-07-01
972498
Scientists and engineers at NASA are currently developing flight instruments which will demonstrate oxygen production on the Moon and Mars. REGA will extract oxygen from the lunar regolith, measure implanted solar wind and indigenous gases, and monitor the lunar atmosphere. MIP will demonstrate oxygen production on Mars, along with key supporting technologies including filtration, atmospheric acquisition and compression, thermal management, solar cell performance, and dust removal.
Technical Paper

Phase III Integrated Water Recovery Testing at MSFC: International Space Station Recipient Mode Test Results and Lessons Learned

1997-07-01
972375
A test has been completed at NASA's Marshall Space Flight Center (MSFC) to evaluate the Water Recovery and Management (WRM) system and Waste Management (WM) urinal design for the United States On-Orbit Segment (USOS) of the International Space Station (ISS). Potable and urine reclamation processors were integrated with waste water generation equipment and successfully operated for a total of 128 days in recipient mode configuration to evaluate the accumulation of contaminants in the water system and to assess the performance of various modifications to the WRM and WM hardware. No accumulation of contaminants were detected in the product water over the course of the recipient mode test. An additional 18 days were conducted in donor mode to assess the ability of the system to removal viral contaminants, to monitor the breakthrough of organic contaminants through the multifiltration bed, and for resolving anomalies that occurred during the test.
Technical Paper

Lunar-Mars Life Support Test Project Phase III Water Recovery System Operation and Results

1998-07-13
981707
An integrated water recovery system was operated for 91 days in support of the Lunar Mars Life Support Test Project (LMLSTP) Phase III test. The system combined both biological and physical-chemical processes to treat a combined wastewater stream consisting of waste hygiene water, urine, and humidity condensate. Biological processes were used for primary degradation of organic material as well as for nitrification of ammonium in the wastewater. Physical-chemical systems removed inorganic salts from the water and provided post-treatment. The integrated system provided potable water to the crew throughout the test. This paper describes the water recovery system and reviews the performance of the system during the test.
Technical Paper

Measuring Aqueous Humor Glucose Across Physiological Levels: NIR Raman Spectroscopy, Multivariate Analysis, Artificial Neural Networks, and Bayesian Probabilities

1998-07-13
981598
We have elicited a reliable Raman spectral signature for glucose in rabbit aqueous humor across mammalian physiological ranges in a rabbit model stressed by recent myocardial infarction. The technique employs near infrared Raman laser excitation at 785 nm, multivariate analysis, non-linear artificial neural networks and an offset spectra subtraction strategy. Aqueous humor glucose levels ranged from 37 to 323 mg/dL. Data were obtained in 80 uL samples to anticipate the volume constraints imposed by the human and rabbit anterior chamber of the eye. Total sample collection time was 10 seconds with total power delivered to sample of 30 Mw. Spectra generated from the aqueous humor were compared qualitatively to artificial aqueous samples and an excitation offset technique was devised to counteract broadband background noise partially obscuring the glucose signature.
Technical Paper

Cascade Distillation Subsystem Development Testing

2008-01-29
2008-01-2195
Recovery of potable water from wastewater is essential for the success of long-term manned missions to the moon and Mars. Honeywell International and the team consisting of Thermodistillation Company (Kyiv, Ukraine) and NASA Johnson Space Center (JSC) Crew and Thermal Systems Division are developing a wastewater processing subsystem that is based on centrifugal vacuum distillation. The Wastewater Processing Cascade Distillation Subsystem (CDS) utilizes an innovative and efficient multi-stage thermodynamic process to produce purified water. The rotary centrifugal design of the system also provides gas/liquid phase separation and liquid transport under microgravity conditions. A five-stage prototype of the subsystem was built, delivered and integrated into the NASA JSC Advanced Water Recovery Systems Development Facility for development testing.
Technical Paper

Further Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2008-06-29
2008-01-2101
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft, but additional data was needed on the operational characteristics of the package in a simulated spacecraft environment. One unit was tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the latter part of 2006. Those test results were reported in a 2007 ICES paper.
Technical Paper

Demonstration of Super Cooled Ice as a Phase Change Material Heat Sink for Portable Life Support Systems

2009-07-12
2009-01-2405
A phase change material (PCM) heat sink using super cooled ice as a non-toxic, non-flammable PCM is being developed for use in a portable life support system (PLSS). The latent heat of fusion for water is approximately 70% larger than most paraffin waxes, which can provide significant mass savings. Further mass reduction is accomplished by super cooling the ice significantly below its freezing temperature for additional sensible heat storage. Expansion and contraction of the water as it freezes and melts is accommodated with the use of flexible bag and foam materials. A demonstrator unit has been designed, built, and tested to demonstrate proof of concept. Both testing and modeling results are presented.
Technical Paper

Anthropometric and Blood Flow Characteristics Leading to EVA Hand Injury

2009-07-12
2009-01-2471
The aim of this study was to explore if fingernail delamination injury following EMU glove use may be caused by compression-induced blood flow occlusion in the finger. During compression tests, finger blood flow decreased more than 60%, however this occurred more rapidly for finger pad compression (4 N) than for fingertips (10 N). A pressure bulb compression test resulted in 50% and 45% decreased blood flow at 100 mmHg and 200 mmHg, respectively. These results indicate that the finger pad pressure required to articulate stiff gloves is more likely to contribute to injury than the fingertip pressure associated with tight fitting gloves.
Technical Paper

Operation of Third Generation JPL Electronic Nose on the International Space Station

2009-07-12
2009-01-2522
The Third Generation ENose is an air quality monitor designed to operate in the environment of the US Lab on the International Space Station (ISS). It detects a selected group of analytes at target concentrations in the ppm regime at an environmental temperature range of 18 – 30 °C, relative humidity from 25 – 75% and pressure from 530 to 760 torr. This device was installed and activated on ISS on Dec. 9, 2008 and has been operating continuously since activation. Data are downlinked and analyzed weekly. Results of analysis of ENose monitoring data show the short term presence of low concentration of alcohols, octafluoropropane and formaldehyde as well as frequent short term unknown events.
Technical Paper

Subjective Perception of Thermal and Physical Comfort in Three Liquid Cooling Garments

2009-07-12
2009-01-2516
The subjective aspects of comfort in three different cooling garments, the MACS-Delphi, Russian Orlan, and LCVG were evaluated. Six subjects (4 males and 2 females) were tested in separate sessions in each garment and in one of two environmental chamber conditions: 24°C and 35°C. Subjects followed a staged exercise/rest protocol with different levels of physical exertion at different stages. Thermal comfort and heat perception were assessed by ratings on visual analog scales. Ratings of physical comfort of the garment and also garment flexibility in positions simulating movements during planetary exploration were also obtained. The findings indicated that both overall thermal comfort and head thermal comfort were rated highest in the MACS-Delphi at 24°C. The Orlan was rated lowest on physical comfort and less flexible in different body positions.
Technical Paper

Testing and Analysis of an Environmental System Test Stand

2003-07-07
2003-01-2361
Thermal control systems for space application plant growth chambers offer unique challenges. The ability to control temperature and humidity independently gives greater flexibility for optimizing plant growth. Desired temperature and relative humidity range vary widely from 15°C to 35°C and 65% to 85% respectively. On top of all of these variables, the thermal control system must also be conservative in power and mass. These requirements to develop and test a robust thermal control system for space applications led to the design and development of the Environmental System Test Stand (ESTS) at NASA Johnson Space Center (JSC). The ESTS was designed to be a size constrained, environmental control system test stand with the flexibility to allow for a variety of thermal and lighting technologies. To give greater understanding to the environmental control system, the development of the ESTS included both mathematical models and the physical test stand.
Technical Paper

Comparison of Equivalent System Mass (ESM) of Yeast and Flat Bread Systems

2003-07-07
2003-01-2618
The Equivalent System Mass (ESM) metric developed by NASA describes and compares individual system impact on a closed system in terms of a single parameter, mass. The food system of a Mars mission may encompass a large percentage of total mission ESM, and decreasing this ESM would be beneficial. Yeast breads were made using three methods (hand & oven, bread machine, mixer with dough hook attachment & oven). Flat breads were made using four methods (hand & oven, hand & griddle, mixer with dough hook attachment & oven, mixer with dough hook attachment & griddle). Two formulations were used for each bread system (scratch ingredients, commercial mix). ESM was calculated for each of these scenarios. The objective of this study was to compare the ESM of yeast and flat bread production for a Martian surface outpost. Method (equipment) for both types of bread production was demonstrated to be the most significant influence of ESM when one equipment use was assumed.
Technical Paper

Development Status of the VPCAR Water Processor Assembly

2003-07-07
2003-01-2626
The purification of waste water is a critical element of any long-duration space mission. The Vapor Phase Catalytic Ammonia Removal (VPCAR) system offers the promise of a technology requiring low quantities of expendable material that is suitable for exploration missions. NASA has funded an effort to produce an engineering development unit specifically targeted for integration into the NASA Johnson Space Center's Integrated Human Exploration Mission Simulation Facility (INTEGRITY) formally known in part as the Bioregenerative Planetary Life Support Test Complex (Bio-Plex) and the Advanced Water Recovery System Development Facility. The system includes a Wiped-Film Rotating-Disk (WFRD) evaporator redesigned with micro-gravity operation enhancements, which evaporates wastewater and produces water vapor with only volatile components as contaminants. Volatile contaminants, including organics and ammonia, are oxidized in a catalytic reactor while they are in the vapor phase.
Technical Paper

Early Results of an Integrated Water Recovery System Test

2001-07-09
2001-01-2210
The work presented in this paper summarizes the early results of an integrated advanced water recovery system test conducted by the Crew and Thermal Systems Division (CTSD) at NASA-Johnson Space Center (JSC). The system design and the results of the first two months of operation are presented. The overall objective of this test is to demonstrate the capability of an integrated advanced water recovery system to produce potable quality water for at least six months. Each subsystem is designed for operation in microgravity. The primary treatment system consists of a biological system for organic carbon and ammonia removal. Dissolved solids are removed by reverse osmosis and air evaporation systems. Finally, ion exchange technology in combination with photolysis or photocatalysis is used for polishing of the effluent water stream. The wastewater stream consists of urine and urine flush water, hygiene wastewater and a simulated humidity condensate.
Technical Paper

Immobilized Microbe Microgravity Water Processing System (IMMWPS) Flight Experiment Integrated Ground Test Program

2002-07-15
2002-01-2355
This paper provides an overview of the IMMWPS Integrated Ground Test Program, completed at the NASA Johnson Space Center (JSC) during October and November 2001. The JSC Crew and Thermal Systems Division (CTSD) has developed the IMMWPS orbital flight experiment to test the feasibility of a microbe-based water purifier for use in zero-gravity conditions. The IMMWPS design utilizes a Microbial Processor Assembly (MPA) inoculated with facultative anaerobes to convert organic contaminants in wastewater to carbon dioxide and biomass. The primary purpose of the ground test program was to verify functional operations and procedures. A secondary objective was to provide initial ground data for later comparison to on-orbit performance. This paper provides a description of the overall test program, including the test article hardware and the test sequence performed to simulate the anticipated space flight test program. In addition, a summary of significant results from the testing is provided.
Technical Paper

Mathematical Modeling of Food Systems for Long-Term Space Missions

2002-07-15
2002-01-2290
The quantitative analysis of the food system for long-term space missions is a crucial factor for the comparison of different food plans and for the evaluation of the food system as part of the overall mission. Such analysis should include important factors such as nutrition, palatability, diet cycle length, and psychological issues related to food. This paper will give the details of a mathematical model that was developed during the first author's participation as a Summer Faculty Fellow at Johnson Space Center. The model includes nutrition, palatability, diet cycle length, and psychological issues as important components. The model is compatible with the Equivalent System Mass (ESM) metric previously developed as the Advance Life Support (ALS) Research and Technology Metric.
Technical Paper

International Space Station Waste Collector Subsystem Risk Mitigation Experiment Design Improvements

2002-07-15
2002-01-2304
The International Space Station Waste Collector Subsystem Risk Mitigation Experiment (ISS WCS RME) was flown as the primary (Shuttle) WCS on Space Shuttle flight STS-104 (ISS-7A) in July 2001, to validate new design enhancements. In general, the WCS is utilized for collecting, storing, and compacting fecal & associated personal hygiene waste, in a zero gravity environment. In addition, the WCS collects and transfers urine to the Shuttle waste storage tank. All functions are executed while controlling odors and providing crew comfort. The ISS WCS previously flew on three Shuttle flights as the Extended Duration Orbiter (EDO) WCS, as it was originally designed to support extended duration Space Shuttle flights up to 30 days in length. Soon after its third flight, the Space Shuttle Program decided to no longer require 30 day extended mission duration capability and provided the EDO WCS to the ISS Program.
Technical Paper

The Interaction of Spacecraft Cabin Atmospheric Quality and Water Processing System Performance

2002-07-15
2002-01-2300
Although designed to remove organic contaminants from a variety of wastewater streams, the planned U.S. and present Russian-provided water processing systems on board the International Space Station (ISS) have capacity limits for some of the more common volatile cleaning solvents used for housekeeping purposes. Using large quantities of volatile cleaning solvents during the ground processing and in-flight operational phases of a crewed spacecraft such as the ISS can lead to significant challenges to the water processing systems. To understand the challenges facing the management of water processing capacity, the relationship between cabin atmospheric quality and humidity condensate loading is presented. This relationship is developed as a tool to determine the cabin atmospheric loading that may compromise water processing system performance.
X