Refine Your Search

Topic

Author

Search Results

Technical Paper

IVA/EVA Life Support Umbilical System

2007-07-09
2007-01-3228
For NASA's Constellation Program, an Intravehicular Activity (IVA) and Extravehicular Activity (EVA) Life Support Umbilical System (LSUS) will be required to provide environmental protection to the suited crew during Crew Exploration Vehicle (CEV) cabin contamination or depressurization and contingency EVAs. The LSUS will provide the crewmember with ventilation, cooling, power, communication, and data, and will also serve as a crew safety restraint during contingency EVAs. The LSUS will interface with the Vehicle Interface Assembly (VIA) in the CEV and the Suit Connector on the suit. This paper describes the effort performed to develop concept designs for IVA and EVA umbilicals, universal multiple connectors, handling aids and stowage systems, and VIAs that meet NASA's mission needs while adhering to the important guiding principles of simplicity, reliability, and operability.
Technical Paper

Lunar-Mars Life Support Test Project Phase III Water Recovery System Operation and Results

1998-07-13
981707
An integrated water recovery system was operated for 91 days in support of the Lunar Mars Life Support Test Project (LMLSTP) Phase III test. The system combined both biological and physical-chemical processes to treat a combined wastewater stream consisting of waste hygiene water, urine, and humidity condensate. Biological processes were used for primary degradation of organic material as well as for nitrification of ammonium in the wastewater. Physical-chemical systems removed inorganic salts from the water and provided post-treatment. The integrated system provided potable water to the crew throughout the test. This paper describes the water recovery system and reviews the performance of the system during the test.
Technical Paper

Further Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2008-06-29
2008-01-2101
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft, but additional data was needed on the operational characteristics of the package in a simulated spacecraft environment. One unit was tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the latter part of 2006. Those test results were reported in a 2007 ICES paper.
Technical Paper

Demonstration of Super Cooled Ice as a Phase Change Material Heat Sink for Portable Life Support Systems

2009-07-12
2009-01-2405
A phase change material (PCM) heat sink using super cooled ice as a non-toxic, non-flammable PCM is being developed for use in a portable life support system (PLSS). The latent heat of fusion for water is approximately 70% larger than most paraffin waxes, which can provide significant mass savings. Further mass reduction is accomplished by super cooling the ice significantly below its freezing temperature for additional sensible heat storage. Expansion and contraction of the water as it freezes and melts is accommodated with the use of flexible bag and foam materials. A demonstrator unit has been designed, built, and tested to demonstrate proof of concept. Both testing and modeling results are presented.
Technical Paper

Preliminary Development of a Suit Port for Planetary Surface EVA — Design Studies

2009-07-12
2009-01-2586
This paper present a summary of the design studies for the suit port proof of concept. The Suit Port reduces the need for airlocks by docking the suits directly to a rover or habitat bulkhead. The benefits include reductions in cycle time and consumables traditionally used when transferring from a pressurized compartment to EVA and mitigation of planetary surface dust from entering into the cabin. The design focused on the development of an operational proof of concept evaluated against technical feasibility, level of confidence in design, robustness to environment and failure, and the manufacturability. A future paper will discuss the overall proof of concept and provide results from evaluation testing including gas leakage rates upon completion of the testing program.
Technical Paper

Testing and Analysis of an Environmental System Test Stand

2003-07-07
2003-01-2361
Thermal control systems for space application plant growth chambers offer unique challenges. The ability to control temperature and humidity independently gives greater flexibility for optimizing plant growth. Desired temperature and relative humidity range vary widely from 15°C to 35°C and 65% to 85% respectively. On top of all of these variables, the thermal control system must also be conservative in power and mass. These requirements to develop and test a robust thermal control system for space applications led to the design and development of the Environmental System Test Stand (ESTS) at NASA Johnson Space Center (JSC). The ESTS was designed to be a size constrained, environmental control system test stand with the flexibility to allow for a variety of thermal and lighting technologies. To give greater understanding to the environmental control system, the development of the ESTS included both mathematical models and the physical test stand.
Technical Paper

Early Results of an Integrated Water Recovery System Test

2001-07-09
2001-01-2210
The work presented in this paper summarizes the early results of an integrated advanced water recovery system test conducted by the Crew and Thermal Systems Division (CTSD) at NASA-Johnson Space Center (JSC). The system design and the results of the first two months of operation are presented. The overall objective of this test is to demonstrate the capability of an integrated advanced water recovery system to produce potable quality water for at least six months. Each subsystem is designed for operation in microgravity. The primary treatment system consists of a biological system for organic carbon and ammonia removal. Dissolved solids are removed by reverse osmosis and air evaporation systems. Finally, ion exchange technology in combination with photolysis or photocatalysis is used for polishing of the effluent water stream. The wastewater stream consists of urine and urine flush water, hygiene wastewater and a simulated humidity condensate.
Technical Paper

Comparative Space Suit Boot Test

2002-07-15
2002-01-2315
In applications that require space-suited crewmembers to traverse rough terrain, boot fit and mobility are of critical importance to the crewmember's overall performance capabilities. Current extravehicular activity (EVA) boot designs were developed for micro-gravity applications, and as such, incorporate only minimal mobility features. Recently three advanced space suit boot designs were evaluated at the National Aeronautics and Space Administration Johnson Space Center (NASA/JSC). The three designs included: 1) a modified Space Shuttle suit (Extravehicular Mobility Unit or EMU) boot, 2) the Modified Experiment Boot designed and fabricated by RD & PE Zvezda JSC, and 3) a boot designed and fabricated by the David Clark Company. Descriptions of each configuration and rationale for each boot design are presented.
Technical Paper

International Space Station Waste Collector Subsystem Risk Mitigation Experiment Design Improvements

2002-07-15
2002-01-2304
The International Space Station Waste Collector Subsystem Risk Mitigation Experiment (ISS WCS RME) was flown as the primary (Shuttle) WCS on Space Shuttle flight STS-104 (ISS-7A) in July 2001, to validate new design enhancements. In general, the WCS is utilized for collecting, storing, and compacting fecal & associated personal hygiene waste, in a zero gravity environment. In addition, the WCS collects and transfers urine to the Shuttle waste storage tank. All functions are executed while controlling odors and providing crew comfort. The ISS WCS previously flew on three Shuttle flights as the Extended Duration Orbiter (EDO) WCS, as it was originally designed to support extended duration Space Shuttle flights up to 30 days in length. Soon after its third flight, the Space Shuttle Program decided to no longer require 30 day extended mission duration capability and provided the EDO WCS to the ISS Program.
Technical Paper

Regenerative Life Support Systems Test Bed Performance: Lettuce Crop Characterization

1992-07-01
921391
Two crops of lettuce (Lactuca sativa cv. Waldmann's Green) were grown in the Regenerative Life Support Systems (RLSS) Test Bed at NASA's Johnson Space Center. The RLSS Test Bed is an atmospherically closed, controlled environment facility for the evaluation of regenerative life support systems using higher plants. The chamber encloses 10.6 m2 of growth area under cool-white fluorescent lamps. Lettuce was double seeded in 480 pots, each containing about 250 cm3 of calcined-clay substrate. Each pot was irrigated with half-strength Hoagland's nutrient solution at an average total applied amount of 2.5 and 1.8 liters pot-1, respectively, over each of the two 30-day crop tests. Average environmental and cultural conditions during both tests were 23°C air temperature, 72% relative humidity, 1000 ppm carbon dioxide (CO2), 16h light/8h dark photoperiod, and 356 μmol m-2s-1 photosynthetic photon flux.
Technical Paper

Innovative Schematic Concept Analysis for a Space Suit Portable Life Support Subsystem

2006-07-17
2006-01-2201
Conceptual designs for a space suit Personal Life Support Subsystem (PLSS) were developed and assessed to determine if upgrading the system using new, emerging, or projected technologies to fulfill basic functions would result in mass, volume, or performance improvements. Technologies were identified to satisfy each of the functions of the PLSS in three environments (zero-g, Lunar, and Martian) and in three time frames (2006, 2010, and 2020). The viability of candidate technologies was evaluated using evaluation criteria such as safety, technology readiness, and reliability. System concepts (schematics) were developed for combinations of time frame and environment by assigning specific technologies to each of four key functions of the PLSS -- oxygen supply, waste removal, thermal control, and power. The PLSS concepts were evaluated using the ExtraVehicular Activity System Sizing Analysis Tool, software created by NASA to analyze integrated system mass, volume, power and thermal loads.
Technical Paper

Chemical Characterization of U.S. Lab Condensate

2006-07-17
2006-01-2016
Approximately 50% of the water consumed by International Space Station crewmembers is water recovered from cabin humidity condensate. Condensing heat exchangers in the Russian Service Module (SM) and the United States On-Orbit Segment (USOS) are used to control cabin humidity levels. In the SM, humidity condensate flows directly from the heat exchanger to a water recovery system. In the USOS, a metal bellows tank located in the US Laboratory Module (LAB) collects and stores condensate, which is periodically off-loaded in about 20-liter batches to Contingency Water Containers (CWCs). The CWCs can then be transferred to the SM and connected to a Condensate Feed Unit that pumps the condensate from the CWCs into the water recovery system for processing. Samples of the condensate in the tank are collected during the off-loads and returned to Earth for analyses.
Technical Paper

Characterization of an Improved Solid Amine for a Regenerative CO2 Removal System

1993-07-01
932292
The Shuttle Orbiter humidity control and carbon dioxide removal system for extended duration missions presently uses a solid amine called HS-C. This August, on board STS-62, a new solid amine called HS-C+ will be used. HS-C+ uses the same amine and the substrate material, but a different preparation process. Forty-seven breakthrough tests have been conducted to characterize the performance of HS-C+. CO2 partial pressure, bed temperature, and H2O partial pressure were varied. Eleven HS-C breakthrough tests were also run to provide a direct comparison. Under all conditions tested, HS-C+ outperformed HS-C. Both materials adsorb all CO2 and H2O available at the start of a test when the beds are fully desorbed. As the bed becomes partially loaded, the CO2 and H2O adsorption rates decrease rapidly. HS-C+ continues adsorbing all CO2 and H2O available for a longer time. Greater surface area on HS-C+ may cause the improved performance.
Technical Paper

Performance Evaluation of Candidate Space Suit Elements for the Next Generation Orbital EMU

1992-07-01
921344
The projections of increased Extravehicular Activity (EVA) operations for the Space Station Freedom (SSF) resulted in the development of advanced space suit technologies to increase EVA efficiency. To eliminate the overhead of denitrogenation, candidate higher-operating pressure suit technologies were developed. The AX-5 all metallic, multi-bearing technologies were developed at the Ames Research Center, and the Mk. III fabric and metallic technologies were developed at the Johnson Space Center. Following initial technology development, extensive tests and analyses were performed to evaluate all aspects of candidate technology performance. The current Space Shuttle space suit technologies were used as a baseline for evaluating those of the AX-5 and Mk. III. Tests included manned evaluations in the Weightless Environment Training Facility and KC-135 zero-gravity aircraft.
Technical Paper

Design of a Shuttle Air and Water Prefilter for Reduced Gravity Operation

1992-07-01
921161
The Space Shuttle humidity separator prefilter was developed to remove debris from the air/water stream that flows from the cabin condensing heat exchanger to the humidity separator. Debris in this flow stream has caused humidity separator pitot tube clogging and subsequent water carryover on several Shuttle flights. The first design concept of the prefilter was flown on STS-40 in June, 1991. The prefilter was installed on-orbit. Video footage of its operation revealed that the prefilter did not pass water at a constant rate, resulting in a tendency to slug the humidity separator. The results from this flight test have resulted in a complete redesign of the prefilter. In this paper the first prefilter design is described, the flight results from STS-40 are examined, and the on-orbit performance of the prefilter is explained. The redesigned prefilter is described with emphasis on the features that should allow successful reduced gravity operation.
Technical Paper

Further Characterization and Multifiltration Treatment of Shuttle Humidity Condensate

1995-07-01
951685
On the International Space Station (ISS), humidity condensate will be collected from the atmosphere and treated by multifiltration to produce potable water for use by the crews. Ground-based development tests have demonstrated that multifiltration beds filled with a series of ion-exchange resins and activated carbons can remove many inorganic and organic contaminants effectively from wastewaters. As a precursor to the use of this technology on the ISS, a demonstration of multifiltration treatment under microgravity conditions was undertaken. On the Space Shuttle, humidity condensate from cabin air is recovered in the atmosphere revitalization system, then stored and periodically vented to space vacuum. A Shuttle Condensate Adsorption Device (SCAD) containing sorbent materials similar to those planned for use on the ISS was developed and flown on STS-68 as a continuation of DSO 317, which was flown initially on STS-45 and STS-47.
Technical Paper

Collection and Chemical Analysis of Reclaimed Water and Condensate from the Mir Space Station

1996-07-01
961569
Potable- and hygiene-quality water will be supplied to crews on the International Space Station through the recovery and purification of spacecraft wastewaters, including humidity condensate, urine, and wash water. Contaminants released into the cabin air from human metabolism, hardware offgassing, flight experiments, and routine operations will be present in spacecraft humidity condensate; normal constituents of urine and bathing water will be present in urine and untreated wash water. This report describes results from detailed analyses of Mir reclaimed potable water, ground-supplied water, and humidity condensate. These results are being used to develop and test water recycling and monitoring systems for the International Space Station (ISS); to evaluate the efficiency of the Mir water processors; and to determine the potability of the recycled water on board.
Technical Paper

Mir Space Station Trace Contaminant Assessment

1996-07-01
961472
Eight SUMMA passivated sampling canisters were shipped to the Russian Space Station Mir in February of 1995 to assess ambient trace contaminant concentrations. Prior to flight, the canisters were injected with isotope labeled surrogates and internal standards to measure potential negative impacts on measurement accuracy caused by the trip environmental conditions of launch and return. Three duplicate canister samples were collected in parallel with Russian sorbent samples to acquire data for comparative purposes. A total of 32 target and 13 non-target volatile compounds were detected in each of the samples analyzed. The concentrations of the compounds remained relatively consistent for the three sampling events, and all of the concentrations of detected contaminants were well below both US and Russian Spacecraft Maximum Allowable Concentrations (SMAC). Five different fluorocarbons were consistently detected at relatively high concentrations.
Technical Paper

Testing of an Amine-Based Pressure-Swing System for Carbon Dioxide and Humidity Control

2007-07-09
2007-01-3156
In a crewed spacecraft environment, atmospheric carbon dioxide (CO2) and moisture control are crucial. Hamilton Sundstrand has developed a stable and efficient amine-based CO2 and water vapor sorbent, SA9T, that is well suited for use in a spacecraft environment. The sorbent is efficiently packaged in pressure-swing regenerable beds that are thermally linked to improve removal efficiency and minimize vehicle thermal loads. Flows are all controlled with a single spool valve. This technology has been baselined for the new Orion spacecraft. However, more data was needed on the operational characteristics of the package in a simulated spacecraft environment. A unit was therefore tested with simulated metabolic loads in a closed chamber at Johnson Space Center during the last third of 2006. Tests were run at a variety of cabin temperatures and with a range of operating conditions varying cycle time, vacuum pressure, air flow rate, and crew activity levels.
Technical Paper

Dehumidification Via Membrane Separation for Space-Based Applications

1988-07-01
881037
This paper describes the development of a membrane-based dehumidification process for space-based applications, such as spacecraft cabins and extra-vehicular-activity (EVA) space suits. Results presented are from 1) screening tests conducted to determine the efficacy of various membranes to separate water vapor from air, and 2) parametric and long-term tests of membranes operated at conditions that simulate the range of environmental conditions (e.g., temperature and relative humidity [RH]) expected in the planned space station. Also included in this paper is a discussion of preliminary designs of membrane-based dehumidification processes for the space station and EVA space suits. These designs result in compact and energy-efficient systems that offer significant advantages over conventional dehumidification processes.
X