Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Propulsion System for Very High Altitude Subsonic Unmanned Aircraft

1998-04-21
981261
This paper explains why a spark ignited gasoline engine, intake pressurized with three cascaded stages of turbocharging, was selected to power NASA's contemplated next generation of high altitude atmospheric science aircraft. Beginning with the most urgent science needs (the atmospheric sampling mission) and tracing through the mission requirements which dictate the unique flight regime in which this aircraft has to operate (subsonic flight @ >80 kft) we briefly explore the physical problems and constraints, the available technology options and the cost drivers associated with developing a viable propulsion system for this highly specialized aircraft. The paper presents the two available options (the turbojet and the turbocharged spark ignited engine) which are discussed and compared in the context of the flight regime.
Technical Paper

Description of the SSF PMAD DC Testbed Control System Data Acquisition Function

1992-08-03
929222
The NASA Lewis Research Center in Cleveland, Ohio has completed the development and integration of a Power Management and Distribution (PMAD) DC Testbed. This testbed is a reduced scale representation of the end to end, sources to loads, Space Station Freedom Electrical Power System (SSF EPS). This unique facility is being used to demonstrate DC power generation and distribution, power management and control, and system operation techniques considered to be prime candidates for the Space Station Freedom. A key capability of the testbed is its ability to be configured to address system level issues in support of critical SSF program design milestones. Electrical power system control and operation issues like source control, source regulation, system fault protection, end-to-end system stability, health monitoring, resource allocation and resource management are being evaluated in the testbed.
Technical Paper

Overview and Evolution of the LeRC PMAD DC Test Bed

1992-08-03
929217
Since the beginning of the Space Station Freedom Program (SSFP), the Lewis Research Center (LeRC) has been actively involved in the development of electrical power system test beds to support of the overall design effort. Throughout this time, the SSFP Program has changed the design baseline numerous times, however, the test bed effort has endeavored to track these changes. Beginning in August 1989 with the baselining of an all DC System, a test bed was developed which supported this design baseline. However, about the time of the Test Bed's Completion in December 1990, the SSFP was again going through another design scrub known as Restructure. This paper describes the LeRC PMAD DC Test Bed and highlights the changes that have taken place in the Test Bed configuration and design resulting from the SSFP Restructure Exercise in December 1990.
Technical Paper

NASA Lewis Stirling SPRE Testing and Analysis with Reduced Number of Cooler Tubes

1992-08-03
929396
Free-piston Stirling power converters are a candidate for high capacity space power applications. The Space Power Research Engine (SPRE), a free-piston Stirling engine coupled with a linear alternator is being tested at the NASA Lewis Research Center in support of the Civil Space Technology Initiative. The SPRE is used as a test bed for evaluating converter modifications which have the potential to improve converter performance and for validating computer code predictions. Reducing the number of cooler tubes on the SPRE has been identified as a modification with the potential to significantly improve power and efficiency. This paper describes experimental tests designed to investigate the effects of reducing the number of cooler tubes on converter power, efficiency and dynamics. Presented are test results from the converter operating with a reduced number of cooler tubes and comparisons between this data and both baseline test data and computer code predictions.
Technical Paper

Steady-State and Dynamic Performance of a 20-KHZ/400-HZ Power Distribution System for More and All-Electric Aircraft Applications

1994-04-01
941195
The steady-state and dynamic performance of a candidate aircraft power distribution system is considered. The system features distribution of both single phase 20-kHz and three-phase 400-Hz power. It is shown that unlike some other recent 20-kHz systems, the power quality of the 20-kHz bus is not a concern due to the use of a synchronous bi-directional rectifier (SBR) as the primary interface to the 20-kHz bus. In addition to showing that the system behaves adequately in the steady-state, the dynamic performance of the system is considered during step changes in load, bolted faults, and sudden variations in jet engine speed.
Technical Paper

In Operation Detection and Correction of Rotor Imbalance in Jet Engines Using Active Vibration Control

1994-04-01
941151
Jet Engines may experience severe vibration due to the sudden imbalance caused by blade failure. This research investigates employment of on board magnetic bearings or piezolectric actuators to cancel these forces in flight. This operation requires identification of the source of the vibrations via an expert system, determination of the required phase angles and amplitudes for the correction forces, and application of the desired control signals to the magnetic bearings or piezo electric actuators. This paper will show the architecture of the software system, details of the control algorithm used for the sudden imbalance correction project described above, and the laboratory test results.
Technical Paper

An Overview of General Aviation Propulsion Research Programs at NASA-Lewis Research Center

1981-04-01
810624
This paper presents a brief overview and technical highlights of general aviation (g/a) propulsion research efforts and studies which have been underway at NASA's Lewis Research Center (LeRC) for the past several years. The review covers near-term improvements for current-type piston engines, as well as studies and limited corroborative research on several advanced g/a engine concepts, including diesels, small turboprops and both piston and rotary stratified-charge engines. Also described is basic combustion research, cycle modeling and diagnostic instrumentation work that will be required to make the new engines a reality. The discussion emphasizes the most recently-completed studies and the basic underlying research work, which have not been reported previously.
Technical Paper

An Overview of the NASA Rotary Engine Research Program

1984-08-01
841018
This paper presents a brief overview and technical highlights of the research efforts and studies on rotary engines over the last several years at the NASA Lewis Research Center. The review covers the test results obtained from turbocharged rotary engines and preliminary results from a high performance single-rotor engine. Combustion modeling studies of the rotary engine and the use of a Laser Doppler Velocimeter to confirm the studies are discussed. An in-house program in which a turbocharged rotary engine was installed in a Cessna Skymaster for ground test studies is also covered. Details are presented on single-rotor stratified-charge rotary engine research efforts, both in-house and on contract.
Technical Paper

Experimental Evaluation of Corner Vanes-Summary

1987-10-01
871784
Two types of turning vane airfoils (a controlled-diffusion shape and a circular-arc shape) have been evaluated in the high-speed and fan-drive corners of a 0.1-scale model of NASA Lewis Research Center's proposed Altitude Wind Tunnel. The high-speed corner was evaluated with and without a simulated engine exhaust removal scoop. The fan-drive corner was evaluated with and without the high-speed corner. Flow surveys of pressure and flow angle were taken for both the corners and the vanes to determine their respective losses. The two-dimensional vane losses were low; however, the overall corner losses were higher because three-dimensional flow was generated by the complex geometry resulting from intersection of the turning vanes with the end wall. The three-dimensional effects were especially pronounced in the outer region of the circular corner.
X