Refine Your Search

Topic

Author

Search Results

Journal Article

Keys to Understanding Spray-guided Combustion of a Narrow-spacing Gasoline Direct Injection SI Engine with a Centrally Mounted Multi-hole Injector

2009-04-20
2009-01-1497
Spray-guided gasoline direct injection SI engines attract as one of new generation lean-burn engines to promise CO2 reduction. These typically adopt “narrow-spacing” concept in which an injector is centrally mounted close to a spark plug. Therefore, geometric targets of the fuel spray and a position of the spark plug have to be exactly limited to maintain a proper mixture in the spark gap. In addition, the stable combustion window is narrow because the spark ignition is limited in a short time during and immediately after the injection. These spatial and temporal restrictions involve some intractable problems concerning the combustion robustness due to the complicate phenomena around the spark plug. The local mixture preparation near the spark plug significantly depends on the spray-induced charge motion. The intense flow induced by the motion blows out and stretches the spark, thereby affecting the spark discharge performance.
Journal Article

New Particulate Matter Sensor for On Board Diagnosis

2011-04-12
2011-01-0302
The reduction of greenhouse gas is becoming increasingly important for humankind, and vehicles with low CO₂ emissions have a part to play in any reduction initiatives. Diesel engines emit 30% less CO₂ than gasoline engines, so diesel engines will make an important contribution to the overall decrease. Unfortunately diesel exhaust gas contains particulate matter (PM) which may cause health problems, and such PM emissions are regulated by law. In order to reduce PM, especially soot, diesel particulate filters (DPFs) are widely fitted to diesel vehicles. A DPF can remove more than 99% by weight of soot from exhaust gas under normal operating conditions, and they are one of the most important methods to achieve any regulation targets. But if the system malfunctions, the PM emissions may exceed the regulation limit. To detect such PM leakage, on-board diagnostics (OBD) are required.
Journal Article

New Design Concept for Diesel Particulate Filter

2011-04-12
2011-01-0603
The Inlet-Membrane DPF, which has a small pore size membrane formed on the inlet side of the body wall, has been developed as a next generation diesel particulate filter (DPF). It simultaneously achieves low pressure drop, small pressure drop hysteresis, high robustness, and high filtration efficiency. Low pressure drop improves fuel economy. Small pressure drop hysteresis has the potential to extend the regeneration interval since the linear relationship between pressure drop and accumulated soot mass improves the accuracy of soot mass detection by means of the pressure drop values. The Inlet-membrane DPF's high robustness also extends the regeneration interval resulting in improved fuel economy and a lower risk of oil dilution while its high filtration efficiency reduces PM emissions. The concept of the Inlet-Membrane DPF was confirmed using disc type filters in 2008 and its performance was evaluated using full block samples in 2009.
Technical Paper

Measurement of Structural Attenuation of a Diesel Engine and its Applications for Reduction of Noise and Vibration

1991-11-01
912710
Structural attenuation of a running diesel engine measured by a new technique showed a constant value regardless of engine speeds. It was verified by this result that structural attenuation is a physical quantity unique to the structure of each engine and, therefore, a good indicator for evaluation of low noise engine structure. In addition, a hydraulic excitation test rig was devised to measure structural attenuation directly and to make effective use of it for noise reduction. Based on the accurate measurements by the excitation test rig, modal analysis and system simulation were conducted for implementation of countermeasures against noise.
Technical Paper

Fuel Injection Control Systems that Improve Three Way Catalyst Conversion Efficiency

1991-02-01
910390
A fuel control method to reduce the harmful exhaust gas from SI engines is proposed. As is well known, both the amplitude and the frequency of the limit cycle in a conventional air-fuel ratio control system are determined uniquely by parameters in the system. And this limits our making full use of the oxygen storage effect of TWC. A simple model of TWC reaction revealed the relationship between maximum conversion efficiency and both the amplitude and the frequency in a air fuel control system. It also revealed that TWC conversion efficiency attained to maximum levels when both the amplitude and the frequency of the limit cycle are selected so as to make full use of the oxygen storage effect of TWC. In order to achieve this, it is necessary to vary both the amplitude and the frequency arbitrarily.
Technical Paper

Development of Mitsubishi Flexible Fuel Vehicle

1991-02-01
910861
A flexible fuel vehicle (FFV) was evaluated through various tests for its potential as an alternative to the conventional gasoline vehicle. This paper presents the systems incorporated in the FFV and the test results. 50,000 mile emission durability tests were also performed and the potential of the FFV as a “Low Emission Vehicle” was assessed. As the result of extensive engineering work, we successfully developed a Galant FFV which exhibits very good durability and reliability. The emission control system which we have developed demonstrated that the vehicle has a good potential to comply with the California formaldehyde emission standard of 15 mg/mile. However, due to the large portion of unburnt methanol in the tail-pipe emissions, FFVs will have more difficulty than gasoline vehicles in meeting non-methane organic gas (NMOG) standards applicable to “Low Emission Vehicles”.
Technical Paper

Passenger Car Engines for the 21st Century

1991-09-01
911908
During next decade, automotive engineers will take up unprecedented challenges to meet a variety of technical demands on passenger cars. While performance, refinement and reliability will continue to be major technical goals of passenger cars, reducing their impact on the environment not only in urban areas but also on the global basis will become an increasingly urgent issue. In addition, the need for energy and resources saving will necessitate development of more fuel efficient cars, exploitation of alternative energy and recycled materials. In this paper, the authors will review various alternative engines as candidates to satisfy the above demands. The authors will also discuss various alternative transportation energy sources such as alcoholic fuels, natural gas, hydrogen and electricity. Finally the trends of future passenger car engine design will be discussed.
Technical Paper

Development of Titanium Alloy Valve Spring Retainers

1991-02-01
910428
Beta Ti alloy valve spring retainers are newly developed for use in mass produced automobiles for the first time. Ti alloy valve spring retainers vith a weight saving of 42%, compared to steel retainers, have reduced the inertial weight of the valve train components by 6%. And this weight reduction has the benefit of increasing the upper limit of the engine speed, which improves the engine performance. Ti alloy valve spring retainers are cold forged by the conventional fabrication facilities for steel retainers, using Ti-22V-4Al (the beta Ti alloy) which possesses excellent cold workability in a solution treated condition. Oxygen surface hardening is applied to protect Ti alloy valve spring retainers from wear damage. In addition, aging treatment and shot blasting are performed to improve strength and stiffness of valve retainers.
Technical Paper

Electric Heating Regeneration of Large Wall-Flow Type DPF

1991-02-01
910136
Ceramic wall-flow type diesel particulate filters (DPF) are being investigated for the aftertreatment systems of heavy duty engines. To use ceramic DPF more reliably and easily, electric heating regenerations are studied varying combustion air flow rates and amounts of accumulated soot. Despite electric heater capacity limitations, it is possible to regenerate DPF at a certain combustion air flow rate without thermal shock failure. The maximum withstood temperature against thermal shock failure of electric heating regeneration is similar to that of diesel burner regeneration on DPF with a nine inch diameter and a twelve inch length.
Journal Article

Development of New High Porosity Diesel Particulate Filter for Integrated SCR Technology/Catalyst

2015-04-14
2015-01-1017
Since the implementation of Euro 6 in September 2014, diesel engines are facing another drastic reduction of NOx emission limits from 180 to only 80 mg/km during NEDC and real driving emissions (RDE) are going to be monitored until limit values are enforced from September 2017. Considering also long term CO2 targets of 95 g/km beyond 2020, diesel engines must become cleaner and more efficient. However, there is a tradeoff between NOx and CO2 and, naturally, engine developers choose lower CO2 because NOx can be reduced by additional devices such as EGR or a catalytic converter. Lower CO2 engine calibration, unfortunately, leads to lower exhaust gas temperatures, which delays the activation of the catalytic converter. In order to overcome both problems, higher NOx engine out emission and lower exhaust gas temperatures, new aftertreatment systems will incorporate close-coupled DeNOx systems.
Technical Paper

Optimized Gasoline Direct Injection Engine for the European Market

1998-02-23
980150
GDI (Gasoline Direct Injection) engine adopting new combustion control technologies was developed and introduced into Japanese domestic market in August of 1996. In order to extend its application to the European market, various system modifications have been performed. Injectors are located with a smaller angle to the vertical line in order to improve the combustion stability in the higher speed range. A new combustion control method named “two-stage mixing” is adopted to suppress the knock in the low speed range. As a result of this new method, the compression ratio was increased up to 12.5 to 1 while increasing the low-end torque significantly. Taking the high sulfur gasoline in the European market into account, a selective reduction lean-NOx catalyst with improved NOx conversion efficiency was employed. A warm-up catalyst can not be used because the selective reduction lean NOx catalyst requires HC for the NOx reduction.
Technical Paper

Thick Film ZrO2 NOx Sensor for the Measurement of Low NOx Concentration

1998-02-01
980170
A practical ZrO2 NOx sensor using dual oxygen pumping cells has been introduced for the control of NOx emitted from a lean-burn gasoline engine and diesel engine.(1),(2). However, the measuring accuracy was not high enough to be useful for controlling or monitoring a low level of NOx concentration such as several tens ppm behind a three way catalyst or lean NOx catalyst which is NOx adsorption or De-NOx catalyst. This paper describes improvement of the interference effect of oxygen in the exhaust gas from the lean-burn gasoline engine and diesel engine. The cause of oxygen dependency is analyzed/revealed and a method of improvement is introduced. The improved NOx sensor has an approximately · · 2% measuring error in the wide range of oxygen concentration on a model gas system, compared to the · ·10% of the previous one.
Technical Paper

Mixing Control Strategy for Engine Performance Improvement in a Gasoline Direct Injection Engine

1998-02-23
980158
Spray motion visualization, mixture strength measurement, flame spectral analyses and flame behavior observation were performed in order to elucidate the mixture preparation and the combustion processes in Mitsubishi GDI engine. The effects of in-cylinder flow called reverse tumble on the charge stratification were clarified. It preserves the mixture inside the spherical piston cavity, and extends the optimum injection timing range. Mixture strength at the spark plug and at the spark timing can be controlled by changing the injection timing. It was concluded that reverse tumble plays a significant role for extending the freedom of mixing. The characteristics of the stratified charge combustion were clarified through the flame radiation analyses. A first flame front with UV luminescence propagates rapidly and covers all over the combustion chamber at the early stage of combustion.
Technical Paper

In-line Hydrocarbon Adsorber for Cold Start Emissions - Part II

1998-02-23
980423
The in-line hydrocarbon (HC) adsorber is a passive after-treatment technology to address cold-start hydrocarbons in automotive engine exhaust gas. A major technical challenge of the in-line HC adsorber is the difference between the HC release temperature of the adsorber and the light-off temperature of the burn-off (BO) Catalyst. We call this phenomenon the “reversed-temperature difference”. To reduce the reversed temperature difference, NGK has proposed a new “In-line HC Adsorber System” which consists of light-off (LO) Catalyst + Barrel Zeolite Adsorber (BZA), with a hole through the center, BO Catalyst and secondary air injection management (SAE 970266). This, our latest paper, describes the evaluation of various adsorbents and the effect of the center hole on the Adsorber BZA. The adsorber system, which had the Adsorber BZA with a 25mm ϕ center hole and adsorbent coated, confirmed 30% lower FTP NMHC emission versus a system with no center hole or adsorbent coating.
Technical Paper

Common Rail Fuel Injection System for Improvement of Engine Performance on Heavy Duty Diesel Engine

1998-02-23
980806
With the intention of improving engine performance and emissions, the authors examined the influence of the method of initial fuel injection quantity reduction and of the injector configuration of a common rail fuel injection system on engine performance and exhaust emissions. Results showed that decreasing the nozzle hole diameter was an effective way to reduce the initial injection quantity without increasing black smoke. Compared to a three-way type injector, it was found that a two-way type injector can greatly reduce the amount of fuel leakage from the electromagnetic injector control valve and fuel consumption could be further improved by reduction of the driving loss. Furthermore, the increase of driving losses with higher injection pressure was small, and as a result, higher pressure injection was possible.
Technical Paper

Analyses of Thermal Shock Failure on Large Volume DPF

1990-02-01
900113
Ceramic honeycomb wall flow diesel particulate filters (DPF) have been investigated for use in exhaust gas control of diesel vehicles. However, before they can be used, prevention of thermal shock failure during combustion regeneration is necessary. Studies were conducted on thermal shock failures on 9-inch diameter large volume DPF during regeneration by finite element analyses (FEA). These studies reveal that, within safe limits, maximum thermal stress is almost constant even at different gas flow rates and oxygen concentrations. Regeneration tests were also conducted on large volume DPF of several materials having different pore size distributions. FEA thermal stress was compared with mechanical strength of the material at safe levels.
Technical Paper

Effect of Turbulence in Intake Port of MPI Engine on Fuel Transport Phenomena and Nonuniformity of Fuel/Air Mixing in Cylinder

1990-02-01
900162
Three zone mixture preparation model, assuming that fuel and air are distributed in three separate zones, fuel air and mixture zone, was proposed. Air Utilization Efficiency derived from the model was used to evaluate the mixing nonuniformity. Effect of the large scale nonisotropic turbulence downstream of the dimple or edge in the intake port of MPI engine on the convective mass transfer from fuel film was clarified by the proposed nondimensional index, Local Sherwood Number. It was found that when the fuel is injected toward the wall where large scale turbulence exists, almost all of the fuel is seeded in the air passing the region at the beginning of the intake process, resulting in the time-resolved nonuniformity of the mixture strength at the intake valve. Using the Air Utilization Efficiency, it was elucidated that time-resolved mixing nonuniformity at intake valves induces spatially nonuniform fuel/air distribution in the cylinder.
Technical Paper

Technology for Meeting the 1991 U.S.A. Exhaust Emission Regulations on Heavy Duty Diesel Engine

1990-10-01
902233
Protection of the Earth's environment by means of energy saving and cleaning up of air pollution on a global scale is one of the most important subjects in the world today. Because of this, the requirements for better fuel economy and cleaner exhaust emissions of internal combustion engines have been getting stronger, and, in particular, simultaneous reduction in nitrogen oxides (NOx) and particulate matter (PM) from heavy-duty diesel engines (HDDEs) without degrading fuel economy has become a major subject. Mitsubishi Motors Corporation (MM) has been selling diesel-powered heavy-duty trucks in the U.S. market since 1985 and has agressively carried out development work for meeting the 1991 model year exhaust emission standards.
Technical Paper

Ceramic Tappets Cast in Aluminum Alloy for Diesel Engines

1990-02-01
900403
The authors developed, for use in diesel engines, ceramic tappets cast in aluminum alloy that drastically improved wear resistance and valve train dynamics. The ceramic tappets consist of two parts: a ceramic head, which contacts the cam and push rod, and a tappet body made of aluminum alloy. Concerning the ceramic, silicon nitride was the best material of the three ceramics evaluated in the tests and the sliding surface, in contact with the cam and push rod, was left unground. As for the aluminum alloy, hyper-eutectic aluminum-silicon alloy with a controlled pro-eutectic silicon size was selected. A reliability analysis using the finite-element method (FEM) was also made on the structure of the ceramic tappet for enhanced durability and reliability. The combination of this tappet and a cam made of hardened ductile cast iron, hardened steel, or chilled cast iron, respectively exhibits excellent wear resistance.
Technical Paper

Reduction of Wall Thickness of Ceramic Substrates for Automotive Catalysts

1990-02-01
900614
Ceramic honeycombs have been used as automotive catalyst supports in US, Japan, Europe and other highly urbanized countries. Now, engine output is a great concern for automanufacturers, and reduction of the wall thickness of honeycomb substrates became indespensable for maintenance of gas flow restriction to a certain low level. To reduce wall thickness, material should be strong to maintain canning strength of substrates. Mechanical strength was improved with high density cordierite. However, isostatic strength of whole substrates was still insufficient with reduced thin walls for canning in spite of the material's high mecanical strength. Discussion is carried out on further possibility of improving canning performance of thin wall substrates as well as flow restriction, and warm up characteristics.
X