Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Development of PZEV Exhaust Emission Control System

2003-03-03
2003-01-0817
A new exhaust emission control system has been developed which complies with the world's most severe emission standard: CARB PZEV. Leaner combustion in cold condition was enabled and rapid warm-up of a close-coupled catalyst was realized by utilizing a newly developed Intake Air Control Valve (IACV) system and hyper-atomization fuel injector. In addition, the newly developed HC adsorbing type 3-way catalyst realized cold HC reduction at lower cost. For further reduction of the exhaust emission, the Variable Valve Timing-Intelligent (VVT-i) system was positively operated immediately after the cold start. By the suitable operation of Variable Valve Timing (VVT), the blow-back from the cylinder enhanced the fuel atomization and re-burning of remaining unburned hydrocarbons (HCs), and increased in-cylinder residual gas reduces NOx.
Technical Paper

Model-Based OBD Logic Utilizing Adsorption and Desorption Model of NH3 in SCR Catalyst

2016-04-05
2016-01-0960
Urea selective catalytic reduction (SCR) systems are a promising technology for helping to lower NOx emissions from diesel engines. These systems also require on-board diagnostic (OBD) systems to detect malfunctioning catalysts. Conventional OBD methodology for a SCR catalyst involves the measurement of NOx concentration downstream of the catalyst. However, considering future OBD regulations, erroneous diagnostics may occur due to variations in the actual environment. Therefore, to enhance OBD accuracy, a new methodology was examined that utilizes NH3 slip as a new diagnostic parameter in addition to NOx. NH3 slip increases as the NOx reduction performance degrades, because both phenomena are based on deterioration in the capability of the SCR catalyst to adsorb NH3. Furthermore, NH3 can be measured by existing NOx sensors because NH3 is oxidized to NO internally. To make use of NH3 slip, an estimation model was developed.
X