Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

An Experimental Investigation on the Emission Characteristics of HCCI Engine Operation Using N-Heptane

2007-07-23
2007-01-1854
This paper presents the emission characteristics of a HCCI engine operation using n-heptane. The experiments were conducted in a single cylinder Co-operative Fuel Research (CFR) engine equipped with an air-assist port fuel injector. The effects of intake temperature, air/fuel ratio, compression ratio, turbo-charging, and EGR rate on exhaust emissions were explored. The analysis of the exhaust gases included oxides of nitrogen (NOx), nitrous oxide (N2O), carbon monoxide (CO), total hydrocarbon (THC), and soot. The hydrocarbon species present in exhaust gases and their concentrations at several operating conditions were also characterized. The strategies to obtain low HC, CO and NOx emissions are presented and discussed. The approaches to effectively retard HCCI combustion phase without deteriorating combustion efficiency are examined. It was found that HCCI combustion produces extremely low soot and NOx emissions.
Technical Paper

Evaluation of Kinetics Process in CFD Model and Its Application in Ignition Process Analysis of a Natural Gas-Diesel Dual Fuel Engine

2017-03-28
2017-01-0554
Computational fluid dynamics (CFD) model has been widely applied in internal combustion (IC) engine research. The integration of chemical kinetic model with CFD provides an opportunity for researchers to investigate the detailed chemical reactions for better understanding the combustion process of IC engines. However, the simulation using CFD has generally focused on the examination of primary parameters, such as temperature and species distributions. The detailed investigation on chemical reactions is limited. This paper presents the development of a post-processing tool capable of calculating the rate of production (ROP) of interested species with the known temperature, pressure, and concentration of each species in each cell simulated using CONVERGE-SAGE CFD model.
X