Refine Your Search

Topic

Search Results

Journal Article

Measurement of Piston Secondary Motion Using the New Digital Telemeter

2013-04-08
2013-01-1708
The authors have developed a measurement technique using a new digital telemeter which measures the piston secondary motion as ensuring high accuracy while under the operation. We applied this new digital telemeter to several measurements and analysis on the piston secondary motion that can cause piston noises, and here are some of the results from our measurement. We have confirmed that these piston motions vary by only several tenths of millimeter changes of the piston specifications such as the piston-pin offset and the center of gravity of the piston. As in other cases, we have found that a mere change of pressure in the crankcase or the amount of lubricating oil supplied on the cylinder bore varies the piston motion that may give effect on the piston noises.
Journal Article

Study of Low-Speed Pre-Ignition in Boosted Spark Ignition Engine

2014-04-01
2014-01-1218
This paper analyzes low-speed pre-ignition (LSPI), a sudden pre-ignition phenomenon that occurs in downsized boosted gasoline engines in low engine speed high-load operation regions. This research visualized the in-cylinder state before the start of LSPI combustion and observed the behavior of particles, which are thought to be the ignition source. The research also analyzed pre-ignition by injecting deposit flakes and other combustible particulate substances into the combustion chamber. The analysis found that these particles require at least two combustion cycles to reach a glowing state that forms an ignition source. As a result, deposits peeling from combustion chamber walls were identified as a new mechanism causing pre-ignition. Additionally, results also suggested that the well-known phenomenon in which the LSPI frequency rises in accordance with greater oil dilution may also be explained by an increase in deposit generation.
Journal Article

Experimental Investigation of Natural Gas-Diesel Dual-Fuel RCCI in a Heavy-Duty Engine

2015-04-14
2015-01-0838
Studies have shown that premixed combustion concepts such as PCCI and RCCI can achieve high efficiencies while maintaining low NOx and soot emissions. The RCCI (Reactivity Controlled Compression Ignition) concept use blending port-injected high-octane fuel with early direct injected high-cetane fuel to control auto-ignition. This paper describes studies on RCCI combustion using CNG and diesel as the high-octane and high-cetane fuels, respectively. The test was conducted on a heavy-duty single cylinder engine. The influence of injection timing and duration of the diesel injections was examined at 9 bar BMEP and1200 rpm. In addition, experiments were conducted using two different compression ratios, (14 and 17) with different loads and engine speeds. Results show both low NOx and almost zero soot emissions can be achieved but at the expense of increasing of unburned hydrocarbon emissions which could potentially be removed by catalytic after-treatment.
Technical Paper

High Load Lean SI-Combustion Analysis of DI Methane and Gasoline Using Optical Diagnostics with Endoscope

2021-09-05
2021-24-0046
Homogeneous lean spark-ignited combustion is known for its thermodynamic advantages over conventional stoichiometric combustion but remains a challenge due to combustion instability, engine knock and NOx emissions especially at higher engine loads above the naturally aspirated limit. Investigations have shown that lean combustion can partly suppress knock, which is why the concept may be particularly advantageous in high load, boosted operation in downsized engines with high compression ratios. However, the authors have previously shown that this is not true for all cases due to the appearance of a lean load limit, which is defined by the convergence of the knock limit and combustion stability limit. Therefore, further research has been conducted with the alternative and potentially renewable fuel methane which has higher resistance to autoignition compared to gasoline.
Journal Article

Simulation of Energy Used for Vehicle Interior Climate

2015-12-01
2015-01-9116
In recent years fuel consumption of passenger vehicles has received increasing attention by customers, the automotive industry, regulatory agencies and academia. However, some areas which affect the fuel consumption have received relatively small interest. One of these areas is the total energy used for vehicle interior climate which can have a large effect on real-world fuel consumption. Although there are several methods described in the literature for analyzing fuel consumption for parts of the climate control system, especially the Air-Condition (AC) system, the total fuel consumption including the vehicle interior climate has often been ignored, both in complete vehicle testing and simulation. The purpose of this research was to develop a model that predicts the total energy use for the vehicle interior climate. To predict the total energy use the model included sub models of the passenger compartment, the air-handling unit, the AC, the engine cooling system and the engine.
Journal Article

Non-Contact Measurement Method for High Frequency Impedance of Load at the End of Wire Harness

2017-03-28
2017-01-1643
To avoid a trial and error adjustment for designing EMI filters, clarifying load impedance of operating condition, i.e., dynamic impedance of equipment is very useful. Therefore the need to a non-contact measurement method of the impedance connected to a wire harness is increasing rapidly. A measurement method using a network analyzer with two current probes was previously proposed. However, it was confirmed only up to 30 MHz. Many radio equipment operate above 30 MHz such as FM receivers and GPS receivers installed in vehicles. So increasing the measurement frequency is necessary in the auto industry. At first, we tried to expand the applicable frequency to 100 MHz, i.e., FM band. In this study, we applied the transmission line theory using the non-contact measurement method. Furthermore, in order to use the theory, the characteristic impedance and phase constant of the wire harness are required. So we made an additional measurement to estimate them.
Journal Article

Self-Excited Wound-Field Synchronous Motors for xEV

2017-03-28
2017-01-1249
Compact, high efficiency and high reliability are required for an xEV motor generator. IPM rotors with neodymium magnets are widely applied for xEV motors to achieve these requirements. However, neodymium magnet material has a big impact on motor cost and there is supply chain risk due to increased usage of these rare earth materials for future automotive xEV’s. On the other hand, a wound-field rotor does not need magnets and can achieve equivalent performance to an IPM rotor. However, brushes are required in order to supply current to the winding coil of the rotor. This may cause insulation issues on xEV motors which utilize high voltage and high currents. Therefore, it is suggested to develop a system which supplies electric energy to the rotor field winding coil from the stator without brushes by applying a transformer between stator coil and rotor field winding. Specifically, add auxiliary magnetic poles between each field winding pole and wind sub-coils to these poles.
Journal Article

Force Based Measurement Method for Cooling Flow Quantification

2017-03-28
2017-01-1520
Quantification of heat exchanger performance in its operative environment is in many engineering applications an essential task, and the air flow rate through the heat exchanger core is an important optimizing parameter. This paper explores an alternative method for quantifying the air flow rate through compact heat exchangers positioned in the underhood of a passenger car. Unlike conventional methods, typically relying on measurements of direct flow characteristics at discrete probe locations, the proposed method is based on the use of load-cells for direct measurement of the total force acting on the heat exchanger. The air flow rate is then calculated from the force measurement. A direct comparison with a conventional pressure based method is presented as both methods are applied on a passenger car’s radiator tested in a full scale wind tunnel using six different grill configurations. The measured air flow rates are presented and discussed over a wide range of test velocities.
Journal Article

Approaches for Secure and Efficient In-Vehicle Key Management

2016-04-05
2016-01-0070
Modern vehicles utilize various functionalities that require security solutions such as secure in-vehicle communication and ECU authentication. Cryptographic keys are the basis for such security solutions. We propose two approaches for secure and efficient invehicle key management. In both approaches, an ECU acting as a Key Master in the vehicle is required. The first approach is based on SHE. The Key Master generates and distributes new keys to all ECU based on the SHE key update protocol. The second approach performs key establishment based on key derivation. The Key Master sends a trigger in form of a counter and all ECUs derive new keys based on the received counter value and pre-shared keys. It is thus possible to handle in-vehicle key management without the need for an OEM backend to manage all keys. This reduces cost and complexity of the solution.
Journal Article

Measurement of Oil Film Pressure in the Main Bearings of an Operating Engine Using Thin-Film Sensors

2008-04-14
2008-01-0438
We developed a technique to measure oil film pressure distribution in engine main bearings using thin-film pressure sensors. The sensor is 7μm in thickness, and is processed on the surface of an aluminum alloy bearing. In order to increase the durability of the sensor, a layer of MoS2 and polyamide-imide was coated on thin-film sensors. This technique was applied to a 1.4L common-rail diesel engine operated at a maximum speed of 4,500r/min with a 100Nm full load, and the oil film pressure was monitored while the engine was operating. The measured pressure was compared with calculations based on hydrodynamic lubrication (HL) theory.
Journal Article

Low Emissions and High-Efficiency Diesel Combustion Using Highly Dispersed Spray with Restricted In-Cylinder Swirl and Squish Flows

2011-04-12
2011-01-1393
A new clean diesel combustion concept has been proposed and its excellent performance with respect to gas emissions and fuel economy were demonstrated using a single cylinder diesel engine. It features the following three items: (1) low-penetrating and highly dispersed spray using a specially designed injector with very small and numerous orifices, (2) a lower compression ratio, and (3) drastically restricted in-cylinder flow by means of very low swirl ports and a lip-less shallow dish type piston cavity. Item (1) creates a more homogeneous air-fuel mixture with early fuel injection timings, while preventing wall wetting, i.e., impingement of the spray onto the wall. In other words, this spray is suitable for premixed charge compression ignition (PCCI) operation, and can decrease both nitrogen oxides (NOx) and soot considerably when the utilization range of PCCI is maximized.
Journal Article

CFD Analyses on 2-Stroke High Speed Diesel Engines

2011-09-11
2011-24-0016
In recent years, interest has been growing in the 2-Stroke Diesel cycle, coupled to high speed engines. One of the most promising applications is on light aircraft piston engines, typically designed to provide a top brake power of 100-200 HP with a relatively low weight. The main advantage yielded by the 2-Stroke cycle is the possibility to achieve high power density at low crankshaft speed, allowing the propeller to be directly coupled to the engine, without a reduction drive. Furthermore, Diesel combustion is a good match for supercharging and it is expected to provide a superior fuel efficiency, in comparison to S.I. engines. However, the coupling of 2-Stroke cycle and Diesel combustion on small bore, high speed engines is quite complex, requiring a suitable support from CFD simulation.
Journal Article

Cooling Loss Reduction of Highly Dispersed Spray Combustion with Restricted In-Cylinder Swirl and Squish Flow in Diesel Engine

2012-04-16
2012-01-0689
In diesel engines with a straight intake port and a lipless cavity to restrict in-cylinder flow, an injector with numerous small-diameter orifices with a narrow angle can be used to create a highly homogeneous air-fuel mixture that, during PCCI combustion, dramatically reduces the NOX and soot without the addition of expensive new devices. To further improve this new combustion concept, this research focused on cooling losses, which are generally thought to account for 16 to 35% of the total energy of the fuel, and approaches to reducing fuel consumption were explored. First, to clarify the proportions of convective heat transfer and radiation in the cooling losses, a Rapid Compression Machine (RCM) was used to measure the local heat flux and radiation to the combustion chamber wall. The results showed that though larger amounts of injected fuel increased the proportion of heat losses from radiation, the primary factor in cooling losses is convective heat transfer.
Journal Article

Artist-Centric New HMI Software Development Workflow: Development of Real-Time 3D Rendering Engine for Reconfigurable Instrument Clusters

2013-04-08
2013-01-0425
Instrument clusters that display all information on a TFT-LCD screen, also known as reconfigurable instrument clusters, have become the new trend in automotive interiors. DENSO mass-produced the world's first reconfigurable instrument cluster in 2008. To satisfy customer requirements, large quantities of resources were required. Coupled with an iterative process due to requirement changes, development costs became very high. Reducing development costs was vital in order to expand the reconfigurable instrument cluster products line. One solution was to use existing human machine interface (HMI) tools. However, most HMI tools are geared toward software developers and not graphic artists. Furthermore, each tool has its own unique method for image and scene creation, creating an ineffective and sometimes difficult environment for artists familiar with industry-leading computer graphics (CG) software to learn and use the tools.
Journal Article

Development of Variable Valve Timing System Controlled by Electric Motor

2008-04-14
2008-01-1358
To meet the requirements for lower fuel consumption and emissions as well as higher performances, a “Variable Valve Timing - intelligent by Electric motor (VVT-iE)” system has been newly developed. The system has been firstly adopted to the intake valve train of the Toyota's new 4.6 and 5.0 litter V8 SI engine series. The VVT-iE is composed of a cam phasing mechanism connected to the intake camshaft and brushless motor integrated with its intelligent driver. The motor-actuated system is completely free from operating limitation caused from hydraulic conditions. This enjoys an advantage for reducing cold HC. The system also presents further reduction in fuel consumption.
Journal Article

Design of Seat Mounted ECG Sensor System for Vehicle Application

2013-04-08
2013-01-1339
The causes of deaths in traffic accidents are predominantly human factors such as careless or "heedlessness" driving; recently, accidents that are believed to be due to deteriorated physical conditions, such as heart attacks, have been reported. Non-contact electrocardiography (ECG) monitor for continuous ECG detection while driving is needed to reduce a number of fatal accident by human error like this. Recently there are a lot of papers to detect cardiac electricity using capacitance coupling between human body and electrode. This sensor system must be adopted appropriate high input impedance circuit and noise reduction technique as a function of source impedance value especially for a seat mounted sensor.
Journal Article

Capacitive Humidity Sensors Using Highly Durable Polyimide Membrane

2013-04-08
2013-01-1337
Humidity sensors used in automatic windshield defogging controls contribute to the improvement of fuel consumption. The optimum control of air conditioning systems can be realized by adding humidity information to conventional systems which have used only temperature information. While resistive humidity sensors have been widely used, their sensing range and responsiveness are observed as issues. Resistive sensors cannot function at a humidity range of around 100% RH as well as at a low temperature range, and have a low response rate to sudden changes in humidity. It is considered that resistive humidity sensors will be replaced with capacitive ones which have a wide sensing range and high responsiveness.
Journal Article

Valve Profile Adaptation, Stratification, Boosting and 2-Stroke Strategies for Raising Loads of Gasoline HCCI Engines

2012-04-16
2012-01-1108
The development of high efficiency powertrains is a key objective for car manufacturers. One approach for improving the efficiency of gasoline engines is based on homogeneous charge compression ignition, HCCI, which provides higher efficiency than conventional strategies. However, HCCI is only currently viable at relatively low loads, primarily because at high loads it involves rapid combustion that generates pressure oscillations in the cylinder (ringing), and partly because it gives rise to relatively high NOX emissions. This paper describes studies aimed at increasing the viability of HCCI combustion at higher loads by using fully flexible valve trains, direct injection with charge stratification (SCCI), and intake air boosting. These approaches were complemented by using EGR to control NOX emissions by stoichiometric operation, which enables the use of a three-way catalyst.
Technical Paper

Analyzing the Influence of Gasoline Characteristics on Transient Engine Performance

1991-10-01
912392
It has been reported that the middle range of gasoline distillation temperatures strongly affects vehicle driveability and exhaust hydrocarbon (HC) emissions, and that MTBE(CH3-O-C4H9)- blended gasoline causes poor driveability during warm-up. The present paper is concerned with the results of subsequent detailed research on gasoline characteristics, exhaust emissions and driveability. In this paper, first it is demonstrated by using four models of passenger cars having different types of exhaust gas treatment system that decreased 50% distillation temperature (T50) reduces exhaust HC emission. This result indicates lowering T50 in the market will contribute to improving air quality. Secondly gasoline behavior in the intake manifold is investigated by using an engine on the dynamometer in order to clarify the mechanisms of HC emission increase and poor engine response which are caused by high T50.
Journal Article

Injection Nozzle Coking Mechanism in Common-rail Diesel Engine

2011-08-30
2011-01-1818
The hole diameter of injection nozzles in diesel engines has become smaller and the nozzle coking could potentially cause injection characteristics and emissions to deteriorate. In this research, engine tests with zinc-added fuels, deposit analyses, laboratory tests and numerical calculations were carried out to clarify the deposit formation mechanisms. In the initial phase of deposit formation, lower zinc carboxylate formed close to the nozzle hole outlet by reactions between zinc in the fuel and lower carboxylic acid in the combustion gas. In the subsequent growth phase, the main component changed to zinc carbonate close to nozzle hole inlet by reactions with CO₂ in the combustion gas. Metal components and combustion gases are essential elements in the composition of these deposits. One way of removing these deposits is to utilize cavitations inside the nozzle holes.
X