Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Investigation of Multi-Disciplinary Optimisation for Aircraft Preliminary Design

2011-10-18
2011-01-2761
The ACARE 2020 vision for commercial transport aircraft targets a 50% reduction per passenger kilometer in fuel consumption and CO2 emissions, with a 20-25% reduction to be achieved through airframe improvements. This step change in performance is dependent on the successful integration and down-selection of breakthrough technologies at early stage of aircraft development process, supported by advanced multidisciplinary design capabilities. Conceptual design capabilities, integrating more disciplines are routinely used at Future Project Office. The challenge considered here is to transition smoothly from conceptual to preliminary design whilst maintaining a true multidisciplinary approach. The design space must be progressively constrained, whilst at the same time increasing the level of modelling fidelity and keeping as many design options open for as long as possible.
Technical Paper

Modeling and Analysis of the Electromagnetic Environment on Aircraft and Helicopter Part 2: Coupling to Complex Cable Networks

1999-06-22
1999-01-2356
This paper presents a work carried out within the FULMEN lightning-on-aircraft oriented European project. It is the second part of the general presentation on the analysis of EM environment inside the aircraft. Therefore, it focuses on numerical calculations of voltage and current transfer functions on the ports of the same prototype wiring harness installed in several aircraft structures. The calculations have been carried out with the cable network CRIPTE code and rely on 3D field calculations performed by Ericsson Saab Avionics. The link between the cable code and the 3D code is achieved through the component of the incident electric field tangent to the running path of the wiring.
Technical Paper

Modelling of Non-Spherical Particle Evolution for Ice Crystals Simulation with an Eulerian Approach

2015-06-15
2015-01-2138
In this study a comparison is made between results from three Eulerian-based computational methods that predict the ice crystal trajectories and impingement on a NACA-0012 airfoil. The computational methods are being developed within CIRA (Imp2D/3D), ONERA (CEDRE/Spiree) and University of Twente (MooseMBIce). Eulerian models describing ice crystal transport are complex because physical phenomena, like drag force, heat transfer and phase change, depend on the particle's sphericity. Few correlations exist for the drag of non-spherical particles and heat transfer of these particles. The effect or non-spherical particles on the collection efficiency will be shown on a 2D airfoil.
Technical Paper

A Penalization Method for 2D Ice Accretion Simulations

2019-06-10
2019-01-1939
Numerical tools for 3D in-flight icing simulations are not straightforward to automate when seeking robustness and quality of the results. Difficulties arise from the geometry and mesh updates which need to be treated with care to avoid folding of the geometry, negative volumes or poor mesh quality. This paper aims at solving the mesh update issue by avoiding the re-meshing of the iced geometry. An immersed boundary method (here, penalization) is applied to a 2D ice accretion suite for multi-step icing simulations. The suggested approach starts from a standard body-fitted mesh, thus keeping the same solution for the first icing layer. Then, instead of updating the mesh, a penalization method is applied including: the detection of the immersed boundary, the penalization of the volume solvers to impose the boundary condition and the extraction of the surface data from the field solution.
X